Schema-Driven Development
of Semantic MediaWikis

MASTER THESIS
18" July 2015

Simon Heimler Prof. Dr. Wolfgang Kowarschick
Master of Applied Research (MAPR) Faculty of Computer Science
in Computer Science University of Applied Sciences Augsburg

&
o
' Hochschule
bauer Augsburg University of

rrrrrrrrrrrrrrrrrr Applied Sciences

Abstract

As we developed knowledge managemeisystem for Computer Bauer Gmbiwe
soonreachedsome limits of our chosen target platform, Semantic MediaWiki. Those
limits were not missing features, but thecreasingcosts of developing and main-
taining ourrather complex model.

For that reason, thoseto build a tool thatsupports the developmergrocessby
generating the final implementation code fromsanpler, moreabstractand object
orientedmodel.

However, I obtaid thedfull complaxity oftonventionalmodetdriven
approachesinstead, 6 deeelogdan approat that isas simple as possible while
still meeing our modeling requirementsAs the approaclisesa schema language
to describe thalevelopmenimodel,l 6 | the ap@dadh SchemBriven Develop-
ment (SDD).

In the theoretic part of thisthesjs | 6 | | i approach @ruacgeneric and the-
oretical basis. @rms are defined; benefits amdncepts from MDE/MDA are evalu-
ated and put in context tthe SDDapproachThe main subjecbf the theorychapter
isthe use of a schema language asphienary model languagerad my proposal for
a modulargenerator architecture.

The praxis parputsthe discussetheoretical foundations and proposalso prac-
tice. It documentshe development and technological decisionsngfown SDDgen-
eratorandits domain specific languageasedon the previously introducedorinci-

plesand architecture | decided to usdSON Schema as its schema languayk
YAML/JSON as the notation format

| Galsdevaluate how the SDD approactorked regarding the chosen target plat-
form and our modelingequirementsit turned out tobe well suitedor our specific

use case. It made an agile, rapid prototyping workflow possible that we as a team
found very usefulnd led to a successful realization of our project

Keywords: MDE, ModelDriven EngineeringMDD, ModeiDriven Development,
SDD, Schem®riven DevelopmentJSON Schem&nowledge Management, Se-
mantic MediaWiki, MediaWiki, Node.js

2/58

Table of Contents

ADSTFACT ..ottt et mn e e et nne e 2
TaBIE OF CONENESeiiiiie et m ettt ettt sae e e e nmeenanes 3
[oYl =i To [N =T OO PUPTRPO 6
ADDIEVIBLIONS ...t e ettt mmr e 6
1 INEFOTUCTION ...ttt mm ettt se ke e et e ke e st e et e e e s 7
1.1 PIEIACE ...ttt 8
1.2 2= 1od (o] {11 oo [PO PPPR 8
1.3 IMOBIVAITION ...ttt mm ekt e ettt ekt e e et e b e st b e e nmm e e e 8
1.4 PIINCIPIES .t ettt ettt mm e e e b e et e mmnr e 9
R R [o1 {0 To [¥ o} o o H PP P PP TPPPPPPPRPN 9
1.42 Do One Thing and DO TEWEIL.......cooueiiiiiiiee e s 9
1.4.3 Strive for Simplicity, stack necessary COMPIEXITYcoccueieiriiiieieiiiian et 10
1.4.4 Reuse of existing standards and tOO0IScueiiiuiiiiiiiii e 10
2 Schema-Driven DEeVEIOPMENT........cciiiiiiieiiiiiie e ceee ettt e e mae e e s ebee e e e st e e e e eneeam e 11
2.1 [l i oo [UTox (1o E O USSP PPV PPRUPRP PR 12
22 Schema-Driven DEVEIOPMENT ..o e 12
2.3 VD% ettt ettt e e ettt e e e a e e —n e e e e e e e e e as 12
2.4 BENEILS OF SDDoiiiiiiiiiiiieii e er e 15
2.4.1 Simplification through ADSIFACHONveiiiiiiiiii e e 15
2.4.2 LESS EITOMIIONE ..ciiiiiiiiieieeetete ettt em et e e e e e e e e e e e e e e e et e e et et e et e e e e e es e mn e b e bbb 15
2.4.3 Faster and more Agile DEVBIOPIMENTcoiiiiiiiiiiiiie e ettt e e 15
2.4.4 ReUSE aNd MIQFAtIONuieiiiiiiiiiiiiiti et ettt e e e e e e e e e e e e e e e e e e et b bt e e e e e e e e s e mmaenbbreeeaaeeaean 16
2.45 Separation Of CONCEIMSuuiiiiiiiiie ettt ee ettt m e e e et e e s e e e e et e b e e e e 16
246 COOE QUAIILYeeeiieeeeei ittt ottt e e e e et e e e e e e e ettt et e e e e e e s s mm bbbt et e e e e e e e e e annbbeereeeeme 16
2.5 Using a Schema Language as MOEL..........c.viiiiiiiiiiiiac e 16
251 The SChemMa LANQUAGE. .. .coctviieiiiiiie ettt ettt et ettt e e mm e e e s nnreeeeas 16
2.5.2 Domain Specific Language DevelOPMENT...........oiiiiiiiiiiiiiiia e 18
2.5.3 DOMAIN SPECIFICS ...uvreiieiiiiieeiitie et ettt mm et e e mm e 18
2.5.4 PlatfOrm SPECITICSuueiiiiiiiiiiiiee ettt e e e e e mmat e e e e e e e e e anee 19
255 Implementation SPECITIC S......iuuiiiiiiiiie it me e e 19
2.5.6 Intermediary SPECITICSc.oiiueiiiiiiiii et e 19
2.5.7 INtErNaAl METAOALAeiiiiiiiiie ittt me ettt e ettt n e 20
2.5.8 Separation Of the SPECITICSuuiiiiiie it e e e 20
2.5.9 Side NOLE: SETANLICS ...ccivviiieieiiiiie ittt mee et s bt et e st e e s et e e e e e e s anbne e e e nnneee 20
2.6 ArchiteCture of the GENEIALONiiiiiiiie e 21
2.8.1 OVEIVIEW ...eiiieiiiieii e et ee e et e et e et e e s e e e s e et e e et e e e s et e e mm et e e e e e e e e e e e e e e nnen e 21
2.6.2 INPUL e et e e e e e e et e e e e e e et e e e e e e mn e eee s 22

3/58

2.6.3
26.4
2.6.5

27

27.1
2.7.2
2.7.3
274

28
281
2.8.2

3.1

3.2

321
3.2.2
3.2.3
324
3.25

33

3.3.1
3.3.2
3.3.3
3.34

3.4

34.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

3.5

3.5.1
3.5.2
3.5.3
3.54

36

3.6.1
3.6.2
3.6.3

Model to Model TranSfOrMALIONSuuuuuuueiiiiieieiiieii e ee e e e e e e e e e eeeeee e e e eeemmeeeeersrerr e 23

Model to Text TranSfOrMAatioNooiiiiiiiiiee e e 24
(6 11 1 T | PR SSSR 25
B IC0To] L1 o PP RPPR PP 25
[V Z= 1o F=Y 1o o P PP PO PP PP 25
Model INSPECHION TOOISuviiiiiiiieei i e e e e e e er e e e e e e e e s et e e e e e e mm e anaaraees 26
Model DeVEIOPMENT TOOISeeiiiiiiiie it er ettt mm e e e e mm e s 26
HeIPEI UTIITIES ...ttt e e e e e e e mm et e e e e e e e e s s et e e e e e e e mm s e satbbaeeeeaeeeseanannes 26
KNowledge REQUITEMENTS.........ccuuiiiiiiee e e eecice ettt e e e e e e e et e e e e e e et e e e e e e e s e asasbbaammaeeeeaaans 26
From Generator Develger PErSPECHIVEco.iiii it e 26
FrOM USEI PEISPECHVE.c.ueiiiiiiiie ittt ettt e ettt ettt mn et 27
Generating Semantic MediaWiki Structure with SDD in practiCe..........cccovivveeeriiiiicmniiieeee 28
[l i oo [UTox (1o E O USSP PPV PPRUPRP PR 29
THhe Target PIAtiOrMoo ettt ee e e e ettt e e st e e e e mm e e e e e anbaeeeeannen 29
[i geTo [0 ox1To] o L PP OO P PP PP PP PPPPRR 29
IMEAIAWWIKI ...ttt mm ekttt ettt e bbbt 30
SEMANC MEATAWIKIeeeeeiiiiii e mm et e e 30
SEMANTIC FOMMNS ...ttt ettt mm etttk st et ekt esa b m et e et e e nbneenane e 30
Challenges and PECUNAMLIESuuviiiuiiieeiiiiie ottt et e e e 31
Schema Language DeVelOPIMENT........coiuiiiiiiiiiee i cre et mm e 32

Schema Language

[N [o] r= i o] T o] 1 o= | PP P PUPPPPPPFPP

Developing the Meta-SChema (DSL)ueiiiii it 35
CUSEOM INNEIEANCEeiiiteeee ettt ettt e e ek e e e s mm e e e ane e e s annes 39
ArchiteCture of the GENEIALONviiiiiiie e e 40
OVBIVIBW ...ttt em ettt et mm et e e ettt e skt e e e s e b et e e e sn et e e s sene e e e s emneeeas 40
18] 01U TSP PR PPRPPPP 40
Model to Model TranSfOrMAatiONScoccviiiiiiiiieiimree e mmree e 41
Model to Text TranSfOrMatioNooiiiiiiiiiiiiee e 42
(O 101 o | ST 42

LI To] 110 o TP PP PP PP PPPPPPRTPPPRPN

Validation
MOodel INSPECHION TOOISeeiiiiiiiiiie ettt mm et e b e e e st et eeenae

Model Development Tools

HEIPEE UTIITIES .ottt e st e b et e e et e e nenreee s 48
Use case: Modeling IT Management KNOWIEAQE.............eeieiiiiiieiiiii e ree e 49
1o To 0 o3 1o] o PO P TR PPPRR 49
USING SDD IN PrACHCE.tviieiitiiie ettt ee ettt mm et e et e e e et m et e e 49
Evaluation of the Development MOdElooiiiiiiiiice e 51

4/ 58

3.6.4 Evaluation of the Implementation COOE...........ccoiiiiiiiiiiiiiie e e 53

3.7 OULIOOK ...ttt mm ettt ettt ekt e e etk st e bt e mm e 54
T A R 1Y (o o o RO 54
.72 SDD it ettt e e e et e et e e e e e bbb et e e e e mm e e e 55
RETEIEBNCES. ...ttt b e s er e bt e e ettt mmae e n 57

5/58

List of Figures

Figure 1: SDD in context to the various MD* acronyms

Figure 2: The SChemMa NIEFArCNYoii ittt e e e e e e e e e e eeeeeeeas

Figure 3: From domain specifics to implementation SPeCIfiCSccccccviiiiiiiiiiiiicc e, 18
Figure 4: Proposed modular architecture of the generatorccccceiiiiiiiiiiceiiieie e 22
Figure 5: Screenshot of the mobo CLI appliCationcoiiiiiiiiiiiii e 29
Figure 6: The mobos development Model STTUCIUIE..........couvuviiiiiiee e et e 35
Figure 7: Structure of the MOb0o SChEMAoooiiiiiiii e 36
Figure 8: Mobo Schema with indicated SPECIfICSuuiiiiiiieiiii e 37
Figure 9: Auto-generated mobo Schema documentationcccceeeiiiiiiiiiiceiiiiece e 39
Figure 10: Model iNheritanCe DENAVIONoiiiiiiii e e 39
Figure 11: The MODO INSPECLOT......cciiiiiiieiiiiiee ettt e ettt e ettt e e e s me e e e s snte e e e e stee e e e snteeeemmneeeeesnnneeeeas 47
Figure 12: The interactive graph explorer, visualizing the development model.............cccccovvieeiiiiceenn. 48
Figure 13: Agile/iterative development WOTKIIOWccuiiiiiiiiiiiiiiac e 50
Figure 14: A force-layouted graph visualization of the development modelccoocoeeeiiiiiicciineeen. 51
Figure 15: The development model, split into the SPECIfICSccuuviiiiiiiieiiiie e 52
Figure 16: The size of the development model and the implementation code over time....................... 52
Figure 17: The model size in its various stages; measured in number of characters (xaxis) 53

Abbreviations

O S e Content Management System
DR e ——— e e e e e e e e ——r e e e e e e e e mma—————raaaaaaaaaan CnmPs Qdod"~
K S et e e Knowledge Management System
D * e The various Model Driven Approaches
D A s Model-Driven Architecture
D E e et e e e e e e e e e mm et e eee e s Model-Driven Engineering
MDD e et e e e e s e e e e e as Model-Driven Development
MV e mr et mnrees MediaWiki
S e et mm et e e e e e Semantic Forms
S D et e e e e e e b e e e e e e e e mmaaraes Schema-Driven Development
S I Y e e mn e Semantic MediaWiki
U it et e e e mn e e e n e e e e User Interface
O UPUT TSRO User Experience

6/58

S

Xntqgr dke

1 Introduction

This chapterintroduces the subject of the thesis.l pl$olexplain themoti-
vation and some of the applied basic principles behindthis thesis.

7158

1.1 Preface
O Iredersto the author of this thesis, Simon Heimler

OWe o refers tComputey Baceo GnibHespecially Mdtias Bauer,
Moritz Abraham and Sebastian Schlegehy advisor Prof. Dr. Wolfgang
Kowarschickand myself.

| 6d | i ke to t hankndtpleasant teflaroworklhamks tokMoritz u p por t
Abraham andyaron Koren for proofreading.

| dedicate this work tmy daughter, Sarah Heimler

1.2 Background

This is my master thesis of the university couMaster of Applied Resear§MAPR)
in Computer Science. Sindes currently a rather unusualegreejet me give you a
short description first:

TheMAPR is an applietesearch and industry oriented degree, split into a garte
master studyand parttime (paid)job for a cooperating research facility or com-
pany.The student has the freedom to chodisting lectures and seminars and writes
the master thesis on the subject of his work.

In my case the cooperatingcompany is Computer Bauer Gmbldn IT company
providing hosting services for tax consultants, locatedlunich, Germany

The assignment from the company was to builds&uctured and integrated
Knowledge Management Systetinat handles IT Managementinformation, CRM
and generatompany kiowledge

The combination of research and applicatiatso influencedthe structure ofthis
thesis. Chapter 2lays the theoretical groundworlof the project The theory is
grounded and evaluated through practice, which will descussedn Chapter 3

1.3 Motivation

To implement an internal knowledge managementsystem for the company, we
choseto use Semantic MediaWiki. Soon after siarted developing the first drafts
of our modelwe reacheda point wherethe modelbecame increasingligard toad-
ministerand maintain It became difficuljust to notate the model visual represen-
tationswere only helpful to a certain pointSince we were in a completely theoret-
ical conceptualization phase areouldalsonot be confidentaboutour decisions and
their consequences.

8/58

q

To overcome those problems we needed a way to eotatr developmentnodel in
ascalable, abstracind concisevay. In order toensure we made the right decisigns
we would liketo view, test and evaluate them in attualworking system.

With the chosentechnologiesthis approach would have beetifficult, time con-
suming and error proneTherefore | started to develop a new toolsealled mobé
that provided the workflow and adity we needed for our project.

The main technological decision that drives the workflow is the usmodetdriven
dewelopmenttechniques! wanted the system to be as simple and easy as possible,
especially since | had to develop it on my own besides the atasklof model-
ing/creating the KMS for Computer Bauer.

Therefore,l havestarted to write a MDE system from séca, using much simpler
technologies and concepts that arsually common. Because this approach goes a
few unusual routes, | would like to introduce a new term for it: Schdbneven De-
velopment(SDD)

This approachin both theory and practicewill be the main topic of this thesis.

1.4 Principles

1.4.1 Introduction

There are a few principles (some are a matter of taste) that have guided my decisions,
regarding the choice of technologies and architecture | propos€hapter 2 and
Chapter 3.

To understand those claes better, let me introduce the principles first.

1.4.2 Do One Thing and Do It Well

There is a commonly known UNIKaxim ODo One Thi ngoinednd Do
by Doug Mcllroy. The principleleads to many modular but highly specialized tools
that develop their true potential when being used together.

This is the reason SDD focuses on data schemas as the model basis. Because the
scope is limited, the system does not need to support every eskiyt

Of course, this restricts the SDD approach to some areas (or subareas). However, it
is possible to combine it with traditional software development or MDE techniques,
if the field of application can be sufficiently isolated.

1 Simon Heimler, mobo
2L. Cc- LbHkgnx+ D- M- ORgfigmmfARXx@sl808° Endv qEMhw Shl d

9/58

1.4.3 Strive for Simplicity , stack necessary Complexity

When solving a problem, the simplest solution is preferable.

The only way to avoid these trapsagncourage a software culture that
knows that small is beautiful, that actively resists bloat and complexity: an
engineering tdition that puts a high value on simple solutions, that looks
for ways to break program systems up into small cooperating pieces

There areoccasionsvhere more complex concepts and technologies may become
necessary. This can easily hurt the simplicityneiple through overengineering.

To avoid this pitfall, the more complex technologies and concepts should always be
built on top of the simpler ones. The moetementaryparts should have no depend-
ency to the more complex ones and should be sufficientife simpler tasks.

Thisleads toa system, where the level of complexity can be adjusted/chosen to the
level that is actually needed. It also enforces a more elegant architecture, forcing the
system architect to abstract, simplify and modularize.

1.4.4 Reuse of existing standards and tools

Reusing and adjusting already established standards hamuple ofbenefits. For
one, those standards have usually already been-fiedted. Depending othe dis-
tribution of the software or standardnany developerare ateady familiar with it.
This makes it more likely that thefind and try your system.

Even if developers choose to learn those standards in order to use your system, they
gain benefits by learning a standard that they can use and apply in different centext

3 Eric Steven Raymond,The Art of Unix Programming 40

10/ 58

2 Schema-Driven Development

Theory: This chapter introduces the concept and theterm Schema-

Driven Developmen{SDD) It will discusshow it relates to the concept of
Model Driven Engineering (MDE).

| willalso propose amodular SDD softwarearchitecture that lays the
foundations for Chapter 3.

11/ 58

2.1 Introduction

There are alreadyarioust er ms f or t he type of approach
tion. So why add another one? Tliest reason is that most of those tesmalready

occupied with certairtechnologies and approache&cond, some of these terms do

apply, but are very broad and thereforather nondescriptive

To give this approach some di stintradecei on and
a new term and concept: SchetDaiven Developnent.

| am not the inventor of this concept. There are already projects that use a sehema
driven approach, like Swagget coul dndét find a distinctive
this approach so here we go.

2.2 Schema-Driven Development

A definition of this appr@ch could be:

Schem@riven Developmentsesannotateddata schemaswhich specify
the expected data structyrasmodels t@enerate system artifacgtsode,
documentation, tests, etutomatically

It is agreatly simplified and datecentric subset of ModeDriven Engineering

SDD is nofgeneral purpose and thus noteant as a substitution for MDig general
or even ordinary programming languagemstead, byadheringto the niche of
schemaorientedusecasesit can stay simpl@nd specialized. It should beerefore
guickto learn and applyespecially compared to traditional MCEpproachesThis
turns it into an interesting candidatéor use cases whetbosewould be too difficult
or expensive to implement.

Appropriatefields of applicatiormay bethe (partial or completeyjeneration of AP$
and various CRUD applications like CMS and KMS

2.3 MD*

Before heading into the details dhe Schemdriven Development approach | & d
like to introduce the basic principles ddodelDriven EngineeringMDE) and the

like(I &1 I Subsume t hMD*)vlaill alsoputsthem m relatotons t o
the proposedSDDapproach MDE is a broad topic on itswn, sol will not go into

much detail however. Wile familiarity with the subject ishelpful, it is notrequired

to understand the SDD approach.

4 http://swagger.io/

12/ 58

http://swagger.io/

There arenumerousterms in use. Commady usedare ModelDriven Engineering
(MDE)andModelDriven Develgpment (MDD. Moreover thereisthe Model Driven
Architectures (MDA), which is a specifiapproachadvocatedy the Object Manage-
ment Group (OMG3ince 2015

SDDis a subsebf MDE and MDD.While SDD can be classified aspecific flavor
of Model Driven approacks most ModeDriven approaches are not Schema
Driven.

SDDdoes notmeet the criteria to count aslDA approach. MDA assumes the use

of specific standardized technologies like M@Rd UML® and prescribes a certain

architectured which SDD does noSSimilar to MDA, SDD ispinionatedregarding

its choice to use schema languages model i ng basi s. Contrary
prescribethe concrete technologies to be used

MDE
MDD

MDA

Figure 1: SDD in context to the various MD* acronyms

All the previously mentbned terms includéModelDriven.L et 6 s r evi ew what
means:

The termModel (and therefore modeling) \&ry generic

Modeling, in the broadest sense, is theeffestive use of something in
place of something else for some cognitive purpose. liLellmise some-

thing that is simpler, safer or cheaper than reality instead of reality for
some purpose. A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot represent all aspects
of reality. This allows us to deal with the world in a simplified manner,
avoiding the complexity, danger and irreversibility of reality.

SNLF+ qLC@ Fthcd Udgrhnm 0-/P

6sSqgt xdm+ qSgd E rs Fthcd sn Lncdk Cghudm @ibghsdbstqdP+
"NLF+ aqLds" Nai db/s P& dbghxk.hishxd v'.L NSEg(* mir-engl > shnm Rodbhehb sh
8Bnnj+ qNLF Tmhehdc Lncdkhmf K mft fdP

9 Rothenberg, The Nature of Modeling 1

13/ 58

The main purpose of using modelstigereforeto tame complexityby raising the
level ofabstraction They canalsobe used toeduce the problem to certaiapecial-
izedviewpoints.

In this broadsense, evehigh-level programming languages are modeisthe re-
sulting machine codeProgrammingn C is therefore akind of modetdriven devel-
opment When people are talking abolMIDE, they of courseassumea higher ab-
straction levelof the modekhan the one of current programming languages.

The approach is ModdDriven , becaus¢he model § not only usedfor conceptual-
ization or illustration purposeg’.

It is modeldriven because it@vides a means for using models to direct the
course of understanding, design, construction, deployment, operation,
maintenance and modificatiéh.

To sum it up:

ModeiDriven Development (MDD) is a development paradigm that uses
models as the primaagyrtifact of the development process. UgualMDD
the implementation is (semi)automatically generated from the midels.

MDE technologies and standardave been researchedgvelopedand standardized
for a long time.With their standardization procesand rising flexibility, they also
got more complex, up to a point where it is difficult to weight the cost of learning
those technologies to the benefifthe moreintricate technologieftenrequire ad-
ditional (and oftenproprietary) tooling support in eder to be used in a productive
way.

ScheméDriven Development is &ype of MDD that explicitly defines data schemas
as the modeling basis. Because of that constraint, it can afford to be simpler

The goal of SDD is to reach many (or most) benefits of theMDE ap-
proach, while reducing the complexity of the approach itself to a
reasonable small amount.

Since schema languages are usually text based and relatively simple in nature, tool-
ing support can become optional and a matter of taste.

10 stahl, Modellgetriebene Softwareentwickiung 11
UNLF+ qLC@dEthodt 0-/ P
2Ag 1l ahkk + B® ans -DrivenSoftwateDohgh mdjd gtk hm Oq bshbd®P+

14/ 58

2.4 Benefits of SDD

Why shoulddevelopersuse aschemadriven approach instead of the common and
well-understood traditional software developmentThere are many benefits
which also apply to modediriven approaches in general.

Let me briefly introduce a few of them.

2.4.1 Simplification through Abstraction

The main reason for using models instead of implementation code is that they have
a much higher level of abstraction. The models can therdier®mpler,more con-

cise and focusedn case of schema languages, the models are solution oriénted
they describe the expected or required data structure.

Because the building blocks are simmed more generidt is possible to reuse them
easier. The model can rdpdneyoueséifpr e be very DR

Complex systems can also become very overwhelming to the people who have to
develop, maintain and therefore understand théiraming that compéxity reduces
the mental demand of those tasks.

2.4.2 Less Error-prone

Because of the higher absttéon level developing themodelis simplerand requires
fewer linesof code. Terefore there islessto do wrong.

Likewise, it iseasier for the computer to detect errors when the model can be ana-
lyzed for consistency according to some defined raleg introspection By using a
generator, here is an additional compilation step (from model to implementation
code) where validation can happen.

2.4.3 Faster and more Agile Development

Because of the simpler model and better validation, the development speead-can
crease drastically. This makes the use of agile development methodologies much
more feasible.

Of coursethere is not only the effort of developing the model. If no generator soft-
ware exists,it needsto be developedirst or parallel to the modelThecost of this
and the benefits of modalriven development has to be weighted. Thare cases
where the effort might not be worth jtespecially whenthe use case i®o compli-
catedor specialized.

Blng m cdm G "m+ q04 gd rnmr vgx xnt rgntkc rs>qgs trhmf

14 Hunt and Thomas, The pragmatic programmer

15/ 58

In the case thathe project is very complex and hard toamtain with traditional
development or a lot of similar software has to be developggbatedly MDE has
the potential tosave a lot of effort in the long term.

2.4.4 Reuseand Migration

Models and Data in general also often have a much longer life span tessoftware
that created / uses it itself. If they are generic enough, they can bearsgdeused
in many wayso even originally unintended ones.

There might be the case that the end system changes or might even be replaced. If
the model is generic enougthe programmers could adjust the generator to the new
requirements and the old model will work with the new system as it is.

This also means that systems developed through rsockn get improved features
or performance just by updating the generator sefire and compiling it again.

2.4.5 Separation of Concerns

In MDE, the domain knowledge and the implementation logic/details can be sepa-
rated. Most of the complicated implementation will go into the generator software
itself. People with much less (or none a) albftware development skills calevelop

the model, because much of the implementation complexity is outsourced to the gen-
erator.

The model itseltanbe separated to differeviewpoints each focusing on a differ-
ent aspect of the system.

2.4.6 Code Quality

The generator works by definite rulemn how to transform the model int¢he final
code.Because of that, the resulting code will always be consistent. Improving the
generator transformation logic does automatically improve the cqdality of the
complete result without having to refactor the model itself.

Updates of the generator could then introduce new features and improvements to
the quality and performance of the code. In marasesit is sufficient to recompile
the old modelvith the updated generator and the improvements are applied.

2.5 Using a Schema Language as Model

2.5.1 The Schema Language

Obviously,a choice has to be mads tohow the modekhouldbe written. This splits
usually into two decisions: The notation forméyntax)and a given standd how
to structure the content, the schema language.

16/ 58

In case of ScherA@riven Developmenta few standardized formatspecialize in
describing expected data structures. The most commonly knangprobably XML
Schem& (XSD)that is notaed in XML*¢and JSON Sche#ithat is notated in JSORN

Becausealata schema are usually written in the same data format the schema de-
scribes, this leads to an interesting feature: They are capable elestfiption. This
impliesthat a dataschema can describe itself by using its own capabilifies. spec-
ification of the schema language can be written in the schema langdage

With SDD,we chooseto use data schemas describe expected data structare
within the implementationsystem The Generator also needs to define the expected
data structure of the modehrough a schemalt is referredto asthe metaschema
asit describes theschematself.

If the schemdanguagehas a specification, it is theetametamodel It describes
how both models andnetamodelsneedto bestructured

To sum it up: he model schemaalidates theresulting data in the end systerthe
meta-schemavalidates the modetchemaand everything can be validated against
the metametaschemasine allof them arewritten in the same schema language.

Schemg Laqguage DETELD SOEEIE LEELEg Development Model Resulting Datasets
Specification Generator Schema

,7vali dates: validates validates
Meta-Meta-Schema Meta-Schema Schema Data Entities
T extends |T extends |

Figure 2: The schema hierarchy

Initially, this might sound complicated and abstract. In practice, it is a very elegant
and simple way to use only one schemaaguagefor modeling purpose® on the
model side as well as on the generator siem bottom to top

While the metametaschema is alreadyspecified the metaschemamost likely
needgo becustomdevelopediccording to the given requiremenasid chosen target
platforms

C uhc B- E kkrhcd+ R®dghrlbhkXK qsV'/kIl rOkqgcx +d qq Rk n mc Dc hs hnmi
16 Tim Bray, Jean Paoli, C. M. Sperbesy b Pt dd m+ aqDwsdmr hakd L gjto K mft > fd ' W
YEq mbhr F khdftd+ Jghr Yxo “mc F gx Bntgs+ ql RNM Rbgdl"
Bcntfk r Bgnbjengc+ qSgd "ookhb shnmshmmm LENM(PSxod enq
19 Example:http://json -schema.org/draft -04/schema

17/ 58

http://json-schema.org/draft-04/schema

2.5.2 Domain Specific Language Development

The MetaSchema is a Domain Specific Language (DBB). are nogeneraipur-
poselanguagesbut designed for specific use cases, describing certain domains.

A domainspecific language (DSL) is a prograngii@nguage or executa-

ble specification language that offers, through appropriate notations and
abstractions, expressive power focused on, and usually restricted to, a par-
ticular problem domai#®.

In many casesit is not sufficientto describe theonly the data structureitself. The
gererator might need some more hinti.is also useful if some standard behavior
could be adjusted or overwritten.

To do this, the data schema can be annotated witti nf or mat i on. | 6d
posethree main categories for classifying thesecording to theirspecificity.

There are also two internadategories which are specific only to the generator itself
and thereforedo notfall within the three other categories.

Domain Specific Language

Internal i Generic Implementation:

Intermediary Internal Platform
Specifics Metadata Specifics

Figure 3: From domain specifics to implementation specifics

Domainspecifics will therefore be transformed to platform specifics, increasing the
proximity to the implementation systenProperties thatare more specifivill al-
ways override less specific properties, however.

| hope the term DSL is not confusimgthis context,asit also includes platformand
implementation specifics. The DSL is the sum of all theopeed categories, because
it serves as thecontainer languagéo declare all those specifics

2.5.3 Domain Specifics

Domain Specifics are independent from the technical implementation and describe
the subject interms domain experts use. Since SDD has data camggccaseshe
chosen Schema hguage already brings a vocabulary to describe data structures.
They can be counted as domain specific and provide a free, domain specific base
vocabulary to build upon.

P@qghd u-m Cdtqgrdm+ Ot k-Sde&ific baagtagésnAn Armotatet Bikk 8 g # q 16 g k Ph m

18/ 58

http://www.dict.cc/englisch-deutsch/specificity.html

In MDA terms, thedomain specifics (or domain model) is a mix between tbem-
putational Independent Mod€CIM}*and the Platform Independent Mod@1My2

2.5.4 Platform Specifics

Platform specifics contain information that are specific to a certanget(software)
platform. They directly translate into options, functions or coptof the platform.
Using platform specifics therefore delegate the duty of defining an API from the DSL
to the target platform.

A platform model provides a set of technical concepts, representing the dif-
ferent kinds of parts that make up a platform ameldervices provided by
that platformz23

2.5.5 Implementation Specifics

The Implementation Specifics already use the target language and need not to be
transformed by the generator anymore. They canubéized to overwrite or add
code directly. This is a twedged sword, however:

On the onehand this enables the model to be completely flexible, since everything
that cannotbe modeled can ksdded or overwrittenn the implementation language.

On the otherhand everything that is implementation specific isitside the code
generator andherefore cannotbe inspected, validated or optimizesh the same
level as the rest of the model

| recommend always using the least specific way necessary to
achieve a modeling goalin order to maximize the benefits of the
model-driven approach.

2.5.6 Intermediary Specifics

In the casethat any dynamic functionalif needso be added, intermediargpecific
attributesmust be introduced. The intermediary layer applig® logic, which the
intermediary specific attributeslefine,to the model After they areprocessedthe
helper attributes can (or should) lbemoved

2’NLF+ qLC@ Fthcd Udgrhnm 0-/P+ 04
2NLF+ qLC@ Fthcd Udgrhnm 0-/P+ 05
Z2NLF+ qLC@ Fthecd Udgrhnm 0-/P+ 05

19/ 58

Intermediary specifics make it possitite support dynamic and advancdeatures,

which the chosen schema language doesswgiport by itselfBecause the interme-
diary layer removes those features after they are applied, the resulting model is 100%
compatible with the schema language specification again.

If an intermediary layer is given, it ithereforepossible to introducedatures to the
development model that are not compliant with the schema language specifications
but still helpful for the development process. This is of course a design decision
whether to break that compliance or not.

Paragraph2.6.3.3vill further explainthe intermediary layerand gives some exam-
ples of possible features

2.5.7 Internal Metadata

Internal metadatahaveno impact on the generated implementation co@lbey are
strictly behind the scenes artddden to the userPossibleapplicationsare internal
helper variablesdebugging or statistics.

2.5.8 Separation of the Specifics

In MDA, the modeitself isdividedinto four categories This might be helpful with
big teams with distributed responsibilitieglowever, this alsamplies that more
modelsneedto bemaintained and kept consistetd each other

A simpler approach is to prefix the attributes according to their specific role and
declare in the Meté&schemato which category they belong. One model can then
contain all those informatin at the same time.

If a custom editor tool isitilized, it could then still limit the viewpoints according to
roles and permissions.

2.5.9 Side Note: Semantics

In some cases, annotated data schemas may not be expressive enough. In those cases,
the SDD approach might not be the best way to go.

In my project,| did nothaveto go beyond schemas. In the caseat moreadvanced
expressivenessnecessaryght dabouthoaddi ng an addit
layer on top of the schema layer.

This way, the more basic requirements candohievedthrough the much simpler
schema languages and the more complex proldanbe solved with semantic lan-
guages, like descrigin logics.This would conform to the principle of staeklcom-
plexity. In case of JSON Schema, this would mean to embed-UBQdl express
additional semantics, while the hardalidation still happens on the schema level.

20/ 58

2.6 Architecture of the Generator

2.6.1 Overview

The generator is the software that loads the model, transforms it and outputs the
final implementation code.

Based on my experiences with building a SD
lowing architectureshown inFigure4. It is a flexible proposal, containg several
optional components (drawn with dotted lines).

It is not necessary to implement the full architecture to get started. In fact, mobo
startedwith a few proposed layers missing, which were added later as the project
grew.

In the simplest implementation, the development model is identical to the expanded
model. No modeto-model transformation layers are used. The development model
is directly transformed into the implementation code. In this case, the genermator
not much more than a template engine 8L T Transformation®:

24 Henry Zongaro, Andrew Coleman, C. M. Sperbefgyv dzSSy > W. {[¢ YR - vdzSNE {SNALIfATI

21/ 58

Development Model

y

Abstract Model

Compatibility Layer

y

Intermediary Layer

A A4

Platform 1 Layer Platform 2 Layer

2
<
E=
o
=
=
[%2]
=
<
o
X
w
=
©
°
<]
b=
[e]
2
°©
°
<]
=

A

1)
c
o
a
=
£
L
7]
c
©
©
'_

Expanded Model

A

[+ Metadatq
c
8 i
IS . Y.
=
“g’ Code Generator Code Generator
é_ % Implementation Syster Implementation Syster2
= 2
2 o
) =
2 3 Y v
38 s
Implementation Code Implementation Code
V. A4
=
§ Deployment& Testing Deployment& Testing

Figure 4: Proposedmodular architecture of the generator

2.6.2 Input

The generator reads thaevelopnent model from the file systenfAfterwards it uses

a parser (depending on the notation formdt) convertthe schemalocumentanto

an adequate internalata structurgdepending on the programming language of the
generator)

Note that it is possible toupport different notation formatsy providing multiple
parsers, as long as the structure of the schema document stays consistent.

22/ 58

2.6.3 Model to Model Transformations

2.6.3.1 Model Expansion

The development modshouldbe asabstract,concise andhon-redundantas possi-
bleto be convenient to use and managde generator itself has different require-
ments though. First, verbosity anduglicated information are not an issughen
they are programmatically introducetHowever, theycan be very convenient from
a programming perspective, especially when accessing.data

For example implicit properties from the model can be explicitly creatduaough
some clearly defined rules. That way, the udeo e s n @ twrith themgand keep
them maintained) and thgeneratorcanstill depend on their existencand has not
to infer them repetedly.

Therefore, inthis stage the input modast repeatedlytransformed to yet another,
expanded sually less abstrac@nd more verbogemodel.This stage can be called
the model exparnien phaseand the resulting model thexpanded modelTheJSON
LD standaré uses a similar conceptvhichthey call theexpandeddocumentform.

There are languages that are specifically designed for this job like2gJk6m the
OMG. ltis also possible to use common programming languages for those transfor-
mationso in the simplest case the same language the generator is wiitten

2.6.3.2 Compatibility Layer

The first proposed step is to add optionalcompatibility layer thad transformsout-
dated and deprecated features of older models back to the latest standartbeThis
comesusefulor even necessayyhen newfeaturesneed to be addetd the genera-
tor without breaking older models immediately.

The compatibilitylayer can ao notice the user about the changlesy have to make
in orderto becompliantwith the latest standard.

2.6.3.3 Intermediary Layer

The optional intermediary layer introduce helper functionsthat make writingthe
development modetasier and more dynamiéfter the intermediary specific anno-
tations are applied, they can be removed. Bxpandedmodel(after the transfor-
mation) is then completely compatie with the original schema specification

Featuresthat rely on dynamic logiavould makean intermediay layer necessary:

L mt Rongmx Kds 0-K+ ql RNM
®NLF+ qLds”> Naidbs E > bhkhsx 'hLnNiE (Rold-b/h ePhtbd gsxh. nUniRI v .

23/ 58

Sq°

mr e

The intermediary layer could for example implement custom inheritance and return
the expanded model (where the inheritance has already been applied) as the trans-
formation result.This provides a gooéxample where the development moaean
benon-redundantwhile the expanded model contains a lot of duplicased verbose
information.

Other interesting features would be internationalization, dynamic code injections,
templating capabilities in the development model itself, etc.

2.6.3.4 Platform Layer

The generatomayincludeany number ofplatform layersdependingon how many
platformsare supported This layer will transform the generic domain specifics to
platform specific information.

This is an optional preparation step to pr@ptimize the model for the code genera-
tor. Those transformations could also be done in the code generator itself tbay
can be implemented asodetto-modelinstead ofmodetto-text transformations, it
makesmoresense to put them ithis layer.

2.6.3.5 Expanded Model

The result of the modelto-model transformation phase the expanded model. It
should be 100% compliant to the schema language chosen and contain additional
metadatalt is machineoptimized whereas the development model is hurogti-

mized.

2.6.4 Model to Text Transformation

2.6.4.1 Code Generator

The expanded model is tHeundation that the following modetto-text transfor-
mation uses to generate implementation code.

The generator casupportone or more code generatadone foreachplatformthat
needs tdoe supported.

There are many ways code can be generated from models. It is of course possible to
write the logic in a ordinary programming languag@jst concatenate the resulting
codeand write itto a big text file.

It is also possible to use templateggnes that specialize in this task. Template en-
gines take a text file, written in the desired target language and inject template tags
for custom logic and inserting variables. They are usug@tyd intentionally) limited

in how much logic and complexitihey allowwithin a template, however.

24/ 58

Personally| recommend a hybrid approach. More advanced template engiaes
be extended by writing new custom functions. Those aregrammed in the same
language the template engine itself is written #pplication-specific caistomfunc-
tions therefore improve the modularity and flexibility of the template engine.

This way, templates can use the standard functionality of the template engine where
it is sufficientand custom functions where no€ustom funcion are also a good
choice when the default capabilitié®comeoo complicated and inconvenient.

2.6.4.2 Implementation Code
The resulting code is the implementation code.

As a last step, the generator could now apply coding guidelines aytelssby using
a codebeautifier and similar libraries

2.6.5 Output

Depending on the requirements, the generator can output the implementation code
as text files on the file system and/or handle the deployment by itself.

If the generator handles the deployment, it can generate/tpdae endsystem in
reaktime, allowing for an agile, prototyping workflow. It would also allownning
automated tests against the deployed esys$temin casethat this featureis a part of
the generator.

2.7 Tooling

2.7.1 Validation

Validation of the model is aery useful feature that helpsnproving the quality of
the end system and the development speesrrors can be found much fastarhe
generator can provide Validation on many different levedgntax (1), Structure (2)
and Semantics (3).

The input stage of the generator will use parsers to read the development model.
Nearly all parser libraries already come with error feedbackaseof syntax errors

Since themetaschema is written in the same schema language as the model, the
development model can be validated againstrifeta-schema. This will detect struc-
tural errors.

It is also possible to implement custom logic that also looks for semantic errors,
where the modemay be syntactically and structurally correct but makes no sense
from adomain perspeove.

25/ 58

The resultingimplementation codeanalso be validated usinkinters, compilersor
(auto generated oalreadyexisting unit-tests

2.7.2 Model Inspection Tools

The geerator might come with some tools that help users to understand and inspect
the state of the modellhis could include viewing the model in its various stages
(development modekxpanded modelnd implementatiorcode), a visual represen-
tation, general doumentation, etc.

2.7.3 Model Development Tools

The fact that dateschemas arasuallytext basedallowsthe straightforward usef
versioncontrol systemdike Git. It also means that the development modah be
written with common text editora n d | §eeEidlizedtooling can therefore be-
come unnecessary @t leastoptional.

It is a matter of preference whether to use visual tools or text based t8oise tools
help with creating datsschemas in a visual wayike Altova XMLSp¥” or JSON
buddyzs

In somecasesit might also be a good idea to write a custom editor that is explicitly
optimized for use with the developed generator.

2.7.4 Helper Utilities

The generator can use the information from the development model for more than
just generating the implementain system.

There could beutilities like programmatic data importend synchronization.Ran-

dom testdata®, based on the model schentan be automaticallgenerated The
model can also be used to validate or assess the quality of the existing data in the
end systemThere area lot more possibilities.

2.8 Knowledge Requirements

2.8.1 From Generator Developer Perspective

The developer of the SDD system neéd€hoose and learat leastone data nota-
tion format. Those are usually very simple amgostdevelopers knova few ofthem

27 http://www.altova.com/xmlispy.html
28 http://www.json -buddy.com/
29 Example: Random data from annotated JSONSchema: http://schematic -ipsum.herokuapp.com/

26/ 58

http://www.altova.com/xmlspy.html
http://www.json-buddy.com/
http://schematic-ipsum.herokuapp.com/

anyway.A decision haslsoto be made whiclschema languag® use. Those vary
in complexity- JSON Schema is arguably simpler than XML Schema.

The generatocanbe written in a programmingpf choice

The Domain Specific Langua@g®SL) in our caseéhe metaschemahas to be devel-
oped. Since the DSL is written in the schema language itself, it nadtesderable
sense talevelopa documentation generator that generates the API Docs automati-
cally.

Someoptional technologies can be us#dhey seemappropriate:Template Engines,
Transformation Languages etc.

2.8.2 From User Perspective

The user of the SDD software (a domain expert, or a technical platform expert) does
not need to understand the Generator and the inner workings of it. He has torunde
stand the following technologies and concepts:

If no specializeceditor (tooling) is available, it is mandatory to be write syntactically
correct models. Fluency with the chosen data notation format is therefore the most
basic equirement It is also important to understand thstructure andconcepts of

the chosen data schema language.

The Domain Specific Languagad its featuresnust be learned, too. It wital to
have a decenlocumentationsince it is specific only to the generatdself. Docu-
mentationaboutthose featuresannot be found elsewhere.

Depending on how deep the users goes into the technical implementatrater-
standing of the target platfornt is helpful to mandatory.

27/ 58

3 Generating Semantic MediaWiki
Structure with SDD in practice

Praxis:Using the Schema-Driven Developmentapproachto develop and
generate the structure ofSemantic MediaWiks. An extended, object ori-
ented JSON Schemas used asthe schema language.

28/ 58

3.1 Introduction

This chapter puts the propodeheory and architecture of Schenaiven Develop-
ment into practice.

My SDD generatoimplementation has the nanmaoba® It is written in JavaScript
runs as a CLI applicatioand can be easily downloaded and updated as a NPM pack-
agel

Mobo iscrossplatform and open sourée

MODEL |

SPECF | 3

Skipping upload etting)

[i] ad (s g
DIFF | @ Added | 5 Changed | @ Removed

TIME | 215ms Input | 838ms Processing | Output / Upload

Figure 5: Screenshot of the mobo CLI application

Theuserdocumentationincluding tutorial and autegenerated DSL documentation
is availableat GitBoole:

3.2 The Target Platform

3.2.1 Introduction

The target system is a Knowledge Management Sys{&hlS) Mobo targets the
features of some extensions in addition to theese system itself.

30 Simon Heimler, mobo

3% https://www.npmijs.com/package/mobo

32 hitps://github.com/Fanno n/mobo

BRhlnm Gdhlkdg+ qlnan cnbtldms > shnmP

29/ 58

https://www.npmjs.com/package/mobo
https://github.com/Fannon/mobo

Allow meto give a brief introduction orthe most important parts and aspects of our
target system. For a more comprehensive introduction, | recommend reading the
book OWorking 3with MediaWi ki &

3.2.2 MediaWiki

The choserbase systens MediaWikes (MW). It is a free, opesource KMS that
follows the wiki approach. MW is widespread, well established and Hemeadcom-
munity of users and developers. The system has already proven its stability and
scalability by powering Wikipedia.org.

3.2.3 Semantic MediaWiki

MediaWiki itselfhas only rudimentary features tstoreandretrieve structuredin-
formation;its core strengthiesin the management of unstructured tegome struc-
ture can be achieved throughe definition and use afemplates, but they will only
be stored in plain textnevertheless

This is where Semantic MediaWik(SMW) comes in. SMW adds the capability to
store and query structured data within MWt provides a notation that allows de-
claring facts, either within templates or within free wilkeikt. That information is
stored in a flexible, graplrientedstructure SMW comes with a simple (but limited)
guery language, called ASK which allows to retrieve and reuse those facts.

SMWmakes use dbemantic Web TechnologigSor exampldt canadditionally use

a Triplestoretogether withthe W3C standardized query language SPARQIhis
provides powerful querying and even reasoning capabilities, accessible through a
RESTful API.

3.2.4 Semantic Forms

While SMW introduces structured storage of informationcanonly be entered by
writing wikitext markup. To ensure a bettr user experience and enforcedasired
structure of the informationthe Semantic Forni§extension(SF) allowsdefining

customweb forms

Those forms supporbasicvalidation, autocompletion depending on existing data
andvarious input widgets

34 Koren, Working with MediaWiki
3Vhjhodch + qLdch > VhjhP

368 http://semantic -mediawiki.org/

@mcx Rd - angmd ~mc Rsdudm G gghr+ qRO@QPK 0-0 Ptdgx

38 https://www.mediawiki.org/wiki/Extension:Semantic_Forms

30/ 58

K

mf

http://semantic-mediawiki.org/
https://www.mediawiki.org/wiki/Extension:Semantic_Forms

3.2.5 Challenges and Peculiarities

3.2.5.1 Wikitext as target language

MediaWiki uses its ownmarkup language, wikitextWikitext markup can be ex-
tendedthrough custom functions, templates, magic words, etc. A good example is
the ParserFunctiongextension, which adds a lot of programmatic functionaliiie
if-statementsWikitext is Turing complete?

The implementation language of the generatothe MW specifiowikitext markup
language which is therefore also a Domain Specific Language (D3le) generator
is therefore transforming one DSL into another one

Wikitext has a few notableharacteristis that influenced the im@mentation of the
generator:

Wi kitext is always valid . Therefore,it cannot be validated. This can cause a few
problemsasOb r o k e n Fesultsinrbiokerplayout or functionality butis tech-
nically still valid. Thischaracterstic makes errors hard to spaind avoid

Since wikitext misses validation capabilgiethe ability of the generator to validate
the developmenimodel is a bidpenefitoverusingwikitext directly.

Wikitext is whitespace sensitive . Theresultingwikitext pages andemplates can
thereforebecome very difficult to writeandread becausenserting whitespaces for

readability might break the markug’he developmennod el doesndt have t
lem; it evenallows for inline comments. Thgenerated wikext code may beigly,

but eventhe handwritten wikitext often needso be.

Wikitext supports no inheritance . Thetrue origin of this problem lies in the fact

that wikitext does not support data as a native concept. Templates can be used to
declare infornation once and reuse it somewhere els@wever,since thosé¢em-
platesaretext with mainly text transforming (and nesting) capabilities, thdg not
supportmore advancedata specific features like inheritance.

When designing and implementinidpe knowledje managemenstructure, this be-
comes a limitation, leading to duplicatedkitext. Thisalsomakes the model much
harder to maintainrand keeping it consistent

39 https://www.mediawiki.org/wiki/Extension:Par serFunctions
V)~ gqdc+ qVhjhldch> Ogqnudr FgddmrotmPr Sdmsg K v®P

31/58

http://www.dict.cc/englisch-deutsch/peculiarities.html
https://www.mediawiki.org/wiki/Extension:ParserFunctions

3.2.5.2 Targeting an existing Platform

Targeting an existing platform has advantag#ése wheel does nohaveto be rein-
vented. Existing platformbave already been uséathe field, testedand found use-
ful in real use case¥hey also bringxtensionstheir communty and documentation
with them, which should not be underestimated

However,targeting an existing systerimits the generatoy as itcan only support

features that the target platform supports. The target platform will also influence the

design of theMeta-Model the DSL In some cases, this saves a lot of woekause
someone haalready put a lot of thought into it.l somecasesit means that incon-
sistencies or design problems of the implementation platfarayleak back into the
DSL.

Forinstance the Semantic Forms extension does not supporttieed HTML5 form
validation. The mobo Schema contains enough informatioriake advantagef it,
but since the SF does not, it is currently unsupporfea.implementthis feature it
would needto be implemented in Semantic Forms first.

3.3 Schema Language Development

3.3.1 Schema Language

3.3.1.1 JSON Schema

Mobo uses JSON Schefres schema languagk.was the simplest standarfthe
specification is only a few pageslomghat | 6 ve found t hat

JSONSchema is currently an IETF dr&fin version 4 There is work going on, cre-

st

ating a version 5 draft. This means that JSON Schema is still in development. The

version 4 standard has a broad collection of libraries prmjramminglanguage
supports

3.3.1.2 Benefits of JSON Schema
JSON Schersdiggest strength ishat it is simple and exterable The simplicityof

JSON Schemmakesthe model easy to read and develop with nothing but a text

editor. It alsomakesthe development of the generator easieecausehe standard
is easy to use and extend from a developerspective, too.

“Egq mbhr F khdftd+ Jghr Yxo “mc F gx Bntgs+ ql RNM Rbgdl"

42 hitp://tools.ietf.org/html/draft -zyp-json-schema-04

43 http://json -schema.org/implementations.html

32/58

http://tools.ietf.org/html/draft-zyp-json-schema-04
http://json-schema.org/implementations.html

Many librariesuse andsupport JSON Schema. Malees a few of them, whiathef-
initely saved somelevelopment effortE.g. or internal schemavalidation, the tv4
library44is used.

3.3.1.3 Limitations of JSON Schema

There were two major issues witlsingJSON Schenfar SDD purposeswhich had
to be resolved.

No defined Inheritance Behavior.

The officialsref keywordcan be used to reuse or import internal and external parts
of JSON Schema. In the (unsupported) dasethe $ref keyword is on the same level
with other properties, it is uncleahow to resolve the resulting conflicSome im-
plementations, like the tv4 validator libraty apply inheritancein this casewhile
some do not.

Therefore,] 0 v e d e c idaceadcustorainheritarice capabilitythrough three
new keywordssextend , $remove and$abstract .

The order of properties

From modeling and data structure perspective, it matkesmost sense to use the
property notation to define suelements within the mdel. They are stored as maps
(JavaScript objectand therefore easy to access.

There is one serious problem with that choice fréine code generator perspective.
While for validation and data storage purposes the order of those properties is irrel-
evant, the generator depends on the given ordére order of the input fields within

a form must be definiteWhile JavaScript enginesarews | | ' y gener ous
mix up the order of object properties (until a certain size of the object is reached),
the official standard does not require them to:

An object is a member of the type Obiject. It is an unordered collection of
properties each of veh contains a primitive value, object, or functton

Since mobo stores eaglart of themodel in its own file, the ID is already declared
through the filename. Using properties would duplicate this information by having
to type them as key names agairhi§ isnot only inconvenien, but potentially in-
troduces inconsistemeswhen the key name is not identical to the filename.

44 https://github.com/geraintluff/tv4
45 https://github.com/geraintluff/tv4
Dbl "+ qRs > M&G1gQ2 qkBID@hs hnmP

33/58

and

https://github.com/geraintluff/tv4
https://github.com/geraintluff/tv4

| went with the compromise that the development model usesités notation,
using an (ordered) array structur®obo will theninternally convert it back to the
more convenient property notation and store the order of the iteamsnmetadatan
a separate array.

Code Example:

Item Notation

type: array

items:
- $extend: /field/fieldOne
- $extend: /field/fieldTwo

#1s internally converted to:
type: object
$itemsOrder: ['fieldOne', fieldTwo']
properties:
fieldOne:
$extend: /field/fieldOne
fieldTwo:
$extend: /field/fieldTwo

3.3.2 Notation Format
Mobo supports both YAMEand JSOMNas notation format.

Internally it only uses a YAML Parséthat is used for both YAML and JSON files.
This is possible because YAML is a superset of J8@M. JSON is therefore valid
YAML, too.The YAML parserhas the additional benefit, thatieturns more detailed
syntax errors than the defaultSsON.parse() implementation.

| highly recommendisingthe YAML notationto write the development modelt is
moreconcise ananoreconvenient to write for humansThe JSOMNotation does not
even supportcomments, which are vergonvenientto have in the development
model . That 0 spriraghcaamachiee optiBi@ad seriadization format

“7OrenBerd hj h+ Bk > qj Du > mr ©Omdisimianguaga] sX @UKs2H GX@P K n m

¥cntfk r Bgnbjengc+ qSgdd “eonogk hib us hRibmy hi orsn nN aliddcbhs Mnxso™ s h n'm

49 https://github.com/nodecaljs -yaml

34/ 58

https://github.com/nodeca/js-yaml

3.3.3 Developing the Meta-Schema (DSL)

3.3.3.1 Overall structure

While it is possible to use only a feextensiveschema fiés to describe a system,
using many smaller files has a few advantages. First, it makes reusing them easier
and more straightforwardSmaller files are also easierdomprehendand manage.

In the case of modeling SMW/SF structureimakessense to comepuwith a foun-
dational structure that roughly resemble the nature of the end systenhe target
systemusesSMW PropertiesMW Templates, MediaWiki Categories and Semantic
Forms todefineand implementhe KnowledgeStructure

| choseto split the mobo development model into three main categories: Mobo forms,
mobo models and mobo fielddobo forms can also directlyefer toimplementation
specificMW Templates

Mobo Form

I
0..n
A v v
Single Instance Template Single Instance Model Multiple Instance Model

items
- $extend:/ smwtemplate / name

items :
- items
$extend / model/ name

1
0.n
Mobo Model < |

0.n
A 4

Single Instance Field

items
- $extend :/ model/ name

I
1
v

MW Template

items

- type : string

Mobo Field

v

v

One Value

Multiple Values

type :

string

items :

type :

string

Figure 6: Themobos development model structure

Because mobsupportsobjectorientedinheritancein the development modethe

mobo model structure can be more elegant as the platform strucidrieh is lacking

this capability

35/58

Figure 6 summarizeghis structure.Mobo forms can define any number of single
and multiple instance models. (This reflects SF capability of using siagéemulti-

ple instance templates). A modelfoiees any number of fields it uses. Fields dBn
either single- or multiple value Singlevaluefields represent input fields that hold
exactly one value; multiplealuesfields can hold any number of values, e.g. a field
with commaseparated values.

In contrast, Semantic Forms define within itself which widget to use for €agiw
Property. In the casgthat a field is used by more than one Semantic Form, this in-
formation has to be duplicatedh the mobo structure, this information is declared
in the mobdfield and inheritedall the way up to the mobo form, with the possibility
to overwrite it at any point.

3.3.3.2 Structure of the Mobo Schema

| choseto use JSON Schemaths schema languagef moba The specification of
JSON Schema is available agldescribng JISON Schema fikesoit can be directly
used agnetametaschema

Meta-Meta-
Schema

Meta-Schemgmobo Schemp

tends:

tends:

extends

I 14 14 I
JSON Schema JSON Schema Mobo Schema Mobo Schema Mobo Schema Mobo Schema
Specification Removals Global Additions Field Additions Model Additions Form Additions

Core& Validation

Intermed Specifics Platform Specifics Platform Specifics Platform Specifics
| | |] .

validates

Internal Metadata

Platform Specifics

LEEEEE

validates validates

Mobo Fields Mobo Models Mobo Forms

Figure 7: Structure of the mobo Schema

I 61 | ¢ a-$chema di mobtreentolzo Schemét starts by being auplicateof
the metametasthema the JSONschemaspecification All unsupportedor unnec-
essaryfeatures of JSON Schema are removed afterw@®SON Schema Removals)

The JSON Schema specificatitself is dividedinto a core and a validation specifi-
cation. The latter includes many properties tlean beutilized to describe and vali-
date data structures. Mobo Schemeludes the validation schema, which is used

abase domairspecificvocabulary.

50 http://json -schema.org/draft -04/schema

36/ 58

http://json-schema.org/draft-04/schema

Since Mobo does not support all of JSON Sclserabidation features (becausge-
mantic Formsloes no}, some of themare removedT he use ofsref anddefinition

is substituted bythe custom inheritancéogic that is implemented througkhe inter-
mediary system.

As Figure7implies, the mobo Schema is split into a mobo field schema, mobo model
schema and a mobo form schema. The model schema includes all of the field schema
and the form schema the entire modehsma. This is necessary, because a model
contains fields and may overwrite field specific properties on the model level.

Specifics

The noboSchemadefines thedomain specific, platform specific aimdplementation

specific propertiesThey are alhotatedtogetherin the same fileThe properties are
prefixeddependingon their specificityand the mobo Scheniaternally defines their

role.

$extend: /field/parentField

title: Field Title

type: string
format: email

st form:
N Platform
input type: combobox

Specifics

values from property: hasEmail

smw_overwriteDisplay: '[[mailto:{{{fieldName|}}}1]"

Figure 8: Mobo Schema with indicated specifics

Intermediary Specifics

The intermediary propertysextend triggers the custom inheritance logic in the in-
termediary systemintermediary specifics are prefixed with a dollar sign.

Domain Specifics

Thetitle ,type andformat properties already come witthe JSON Schemaalida-
tion specificationand describe information in a domain specific wayhe mobo
Schemadditionallyintroduces a few own domain specific properties. They have no
prefix.

Platform Specifics

Platform specific information directly resembles and translates intodpgons of
the target platform. E.g.hesf_form propertyis platform specific, as tints though

37/58

its prefix. It directly targets theSF (Semantic Forms) platforin this casethe op-
tions are described in the official Semantic Formlegumentatiodt. Be@usethe op-
tions are only forwarded, mobo does not have to support them on its.own

Using those platform specific propertieasthe disadvantag®f thembeingdepend-
ent on the target platformTheycannot easily be translated to a different platform.
Since mobo only supports one target platform, this is not much of a problem.

The benefit of this approach is that new or changed featwfethe target platform
are immediately availabl® use. Mbo does not need to be updated in order to sup-
port them.This alsosavesmoboa lot of DSL developmerffort.

Implementation Specifics

Implementation specific attributdike smw_overwriteDisplay ~ share their prefix with
the platform specifics, sincboth targeta specificplatform. They can be distin-
guished by tle fact thatimplementation specific propertiedirectly use wikitext as
values

Paragraph3.4.6will further explain the example oFigure8 by illustrating how it is
transformed through the individual layers.

Documentation Generation

Mobo can automatically generathe technicadocumentation of the mobo schema.
It is renderedn markdowr#2format, which then is included to the official GitBogk
documentation though imports.

To keep the documentation clear, only those propertiesraraleredthat are na-
tively specific to the model part.

5% https://www.mediawiki.org/wiki/Exten sion:Semantic_Forms/Defining_forms#.27field.27_tag
52 The Daring FirebalBnl o> mx KKB+ qL > gjcnvmP

53 https://www.gitbook.com

38/ 58

https://www.mediawiki.org/wiki/Extension:Semantic_Forms/Defining_forms#.27field.27_tag
https://www.gitbook.com/

Introduction - If true the template/model will be hidden in the page view. This will usually be declared in the forms by
adding this after the mode| $extend,
1. Getting Started v

Typets)
2. Mobo Modeling 4 showPage Specific to: | «
Default: true
2.1. Manual v
Example:
2.2. Tutorial v showPage: false
2.3, Project Structure v

Adds a append wikitext to forms and models.
2.3.1. /settings.yaml v Type(s): object

specific to: | implementation |

2.3.2. ffield/ v
Example:
2.3.3. /model/ v
sma_append: |
some appended wikitext
2.3.4. /form/ v will be inserted after the Wl header
smw_append s
2.3.5. /smw_page/ v ontains
D Description
2.3.6. /smw_query/ v
Name of the template to inject.
template
2.3.7. /smw_template/ v Type(s):
2.3.8. /mobo_template/ - T Wikitext to append
Type(s)
3. Mobo Utilities v

Figure 9: Auto-generated mobo Schemadocumentation

3.3.4 Custom inheritance

An important feature of mobo is the custom inheritance lodficloes not only help
reusing the code, but also helps to establish the actual structure of the model.

Model
(inter-model inheritancé ParentObject
$ex|tend
ChildObject

Domain Specifics

Domain Specifics

T

override
\

Inheritance through properties

Platform Specifics |

Platform Specifics

T

|
override
\

Implementation Specifics |

Partialtargeted Overwrites

4

override

Overwriting
implementation code

End Result Overwrites

Figure 10: Model inheritance behavior

39/58

A child objectusessextend to declare itgparent andwill inherit all properties of the
parent. Properties of the childbjectwill always overwrite properties of the parent
object

In the case that both share the sapreperty, the merging behavior is the following:

A Primitive properties $tring, Number,Boolear) will be overwritten.

A Objects will be merged. If the object has identical properties, the merging
logic will be recursivelyre-executed at this point.

A Arrays arehandledaccordinglyto the annotations they contain. F@xample,
an array containing@prependand @unique, will first be merged so that the
child properties come first. Then all duplicate items will be removed. For all
options, please refer to the mobser manua.

FigurelOalso illustrates how properties within the model are resolvigidre imple-
mentation specific propeigs always overridéhe less specific propées.

3.4 Architecture of the Generator

3.4.1 Overview

The current implementation of mobo uses all of those proposed architectural parts
(seeFigured), but does not implement all possible aspects of it.

In fact, the architecture was developed parallel to mobo. In some cases, | have in-
ferred the architecture from the actual practice and in other cases, designing the
architecture led to refactoring mobd-or those historicateasonsthe actual archi-
tecture of mobo may not always be as ideal as the proposed architecture.

3.4.2 Input

Mobo stores eacblementof the model in its own file and organizes the structure
through folders.The firstlevel of the folder $ructure separates the different model
areas, likanobo formsmobomodelsmobofields,MW templates etc.Thisis a man-
datory structure that mobo will generate when initializing a new project.

The directory structurewnithin those folders will be flatteed and ignored. The files
can therefore be organized and moved freely without having to adjostexact
paths. The names of the files must be unique anyway.

Mobo will read those files, parse them and sttre resulting data structurén the
internal registry object.

Rhlnm Gdhlkdg+ qlnan cnbtldms > shnmP

40/ 58

3.4.3 Model to Model Transformations

3.4.3.1 Introduction

Mobo useslavaScript fomodetto-modeltransformationsand no specialized trans-
formation languagesThe lodashutility libraryss proved to be very helpful for data
analysis and transformation tasks

3.4.3.2 Compatibility Layer

The compatibility layer became necessary whetetided to refactor some parts of
the mobo Schema. had already developed eather big model thatvas alreadyin
productive use

In order not b bre&k my current model, | had to introducgome transformations
that upgrade legacy properties or schema structures to the latest standard.

As a side effect, the compatibility laysrade a sort ofestdrivendevelopmentvork-
flow possible When new featuresra introduced or existing ones changdd;ould
implement them in the compatibility layefirst. The generator will then faibn its
task togenerae the model untilthe introducedfeatures are developeand inte-
grated

The generator also keepsd#f to the last uploaded state of the target system. This
can be used to detect involuntary changes to the implementation dodbe case
that a refactoringmustnot change theesult, | coulddevelop andix the newy in-
troducedfeatureuntil the diff was identical again

The compatibility layer also tells the user, which parts of the model have to be up-
graded, andjive a short hinthow to do it.

3.4.3.3 Intermediary Layer

Theintermediary layer subsequently addbjectoriented inheritance capability to
JSM SchemaCurrently, it has no otler functionality.

Please note, thatlave already introduced the inheritance feature in paragrd@4
and explained the interntiary layer on a generic level.

Internally, mobo makes heavy use of the lodash library, especialiyrge ¢ for
merging objects (providing custom logic, which handles arrays) anidneDeep 57
to ensure that objecta r eatddentally mutatedn the proces.

55 hitps://lodash.com/ and the book Boduch, Lo-Dash essentials
56 https://lodash.com/docs#merge

57 https://lodash.com/docs#cloneDeep

41/ 58

https://lodash.com/
https://lodash.com/docs#merge
https://lodash.com/docs#cloneDeep

The inheritance layer checks for circular dependenciesginels a warningf in case
one is detectedAdditional metadata is added that helps analyzing the model, e.g. for
tree shaking to detect unused parts of the model.

3.4.3.4 Platform Layer

At the time ofwriting, someplatform andimplementation logic is stilimplemented

in the code generator itselfmostly for historical reasons. Refactoring timeout
would definitely improve the architecture of mobo and probably save some lines of
code, too.

It would also make sense to create a small independent library with helper methods
to turn data structures into wikitext, e.g. template calls, functions, taflet library

could be then be used in the platform layer, the template engine (through a small
wrapper)andother, unrelatedorojects.

3.4.4 Model to Text Transformation

3.4.4.1 Code Generator

The code generator currentiyjakes use dhe handlebars.js template engwith
some custom functionadded Handlebars is a rather simple template dties not
supportsome moreadvanced features like templateheritance

The fact that the template engine uses some of the same control characters (for open-
ing and closing tags/functions) as wikitestakeghe use of escaping very necessary.

A useful feature of handlebar.js iseétuse of the circumflegharacterto strip white
spaces before and afteandlebars expressianThis allowsintroducing some white
space to make the templates more readable while the resulting wikitext can be the
whitespacelessclutter it sometimes needs to be.

Example
{{#teach template ~}}
{{~#if this.prepend}}{{{this.prepend}}}{{/if~}}

3.45 Output

Mobo can handle the deployment to the target wiki itself or simply write the result-
ing wikitext files on the file system.

By default, mobo runs in an interactive mode. It detects changes on the local file
system and automaticallfreXriggersthe processDepending on the settings, which

58 http://handlebarsjs.com/

42/ 58

http://handlebarsjs.com/

can specify which steps mobo should automatically execute, this leads to the follow-
ing workflow steps

1. Validation ofthe development model
2. Compilation ofthe development model to the final wikitext
3. Display which of the resulting wiki pagesave changed since the last suc-
cessful upload to the end system
4. Automatic andoptionaluploadof all wikipagesor (by defaultionly the pages
that have been affected
5. Writing optional statistics andog files. Uploads an optional report to the
wiki.
Mobo currently doesnot supportunit-tests or eneto end tests, so the deployment
does not includeautomatedesting.

3.4.6 Transformation Example

To get a broader picture of the overall transformation proceddjke to get back to
the example codi Figure8.

For sake of bétr readability and formatting, | have added whigpaces andine
breaks The examplas simplifiedand reduced, to illustrate the relevant aspects of
the transformation layers.

Development Model:

The example is written in the YAML notatiorit contains ntermediary, domain,
platform and implementation specific properties.

$extend: ffield/parentField
title: Field Title
type: string
format: email
smw_form:
input type: combobox
values from property: hasEmail

smw_overwriteDisplay: "[[mailto:{{{fieldName[}}}]]

Input Stage

In the input stage, thelevelopment model is parsed to the internal data structure of
the target language. In case of JavaScript, it can be ss@dethrough the JSON no-
tation.

{

"$extend": "ffield/parentField",
"$path™: "C:/the/path/to/someFieldld.yaml",

43/ 58

"title": "Field Title",
"type": "string",
“format": "email",

"smw_form™": {

“input type": "combobox”,
"values from property": "hasEmail"
|3
"smw_overwriteDisplay": “[[mailto:{{{fieldName|}}}]]"

Compatibility Layer
The compatibility layer detects deprecated parts of the development model. In this
example, themw_formproperty name will be renamed tg_form .

{
"$extend": “/field/parentField",
"$path": "C:/the /path/to/someFieldld.yaml",
“title™: "Field Title",
"type": "string",
“format": “"email",
"sf_form " {
“input type": "combobox”,
"values from property": "hasEmail"
h
"smw_overwriteDisplay": "[[mailto:{{{fieldName|}}}]]"
}

The compatibility layer will also notice the user that it has done so.

[i] Renaming deprecated properties "smw_form" to "sf_form" (1)

After the Intermediary Layer

A newsf_form option, existing values only , is inherited. All other properties are
overwritten bythe children itself.

After the inheritance is applied, thiextend property is removed.

{
"$path": "C:/the/path/to/someFieldld.yaml",

"title": "Field Title",
"type": "string",
“format": "email",

"sf form " {

4458

“input type": "combobox",

"values from property": "hasEmail",
"existing values only": true
h
"smw_overwriteDisplay": “[[mailto:{{{fieldName|}}}]]"

After the Platform Layer

The platform layerninfersthe platform specifiamw_type property from the domain
specific type and format properties.

{

"$path": "C:/the/path/to/someFieldld.yaml",

“title": "Field Title",

"type": "string",

"format"; "email",

"smw_type": "Email",

"sf_form™ {
“input type": “combobox”,
"values from property": "hasEmail",
"existing values only": true

h

"smw_overwriteDisplay": “[[mailto:{{{fieldName|}}}]]"

After the Code Generator

The code generator produces the final wikitgpdges. Please note that the mobo
structure is not directly translated into the wikitext structure. In this example, a
mobo field will result in onededicatedvikipage and parts of at least two (depending

on the inheritance) more wikipages.

Property:SomeFiddld

For each fielda SMW Property page is created, declaring theernal SMW
datatype.

<noinclude >

<div class ="mobo- generated" >This page is autogenerated, do not edit it
manually!</ div >

[[Category:mobo - generated]]
</ noinclude >

* This is an attribute of the datatype [[Has type::Email]].

45/ 58

Template:SomeModelld

The mobo field will also transform into a part of a MW Template. The template de-
fines how the field is rendered in the page view mode.

[]
{{#if: {{ someFieldid [}}}|

<div class ="row" >

<div class ="col -sm 4 col - md 3 row - label" >Field Title

</ div >

<div class ="col -sm 8 col -md 9 row - value" data - property ="someFieldld ">

{{{ someFieldld [}}}
</div >
</div > [}
(]

Form:SomeFormld

The SF platform specific field information end up as pHra SF Semantic Form and
define how the field is rendered in the form view mode.

[-]

<div class ="sfFieldContent col -sm 8 col -md9">
{{{field

|someFieldld|class=attr_someFieldld

linput type=combobox|max values=1|existing values only

|[values from property=hasEmail

)

</div >

(]

3.5 Tooling

3.5.1 Validation

Since wikitext canot

be

v al

cdmaelvem dore mo b o s

important aspect of the generatoilhe validation is realized on syntax, structure

and semantic level.

If mobo is runin interactive mode, it will provide validation feedback nearly imme-

diately after a file of the development model is saved

3.5.2 Model Inspection Tools

When run in interactive mode, mobo serves a web applicatiba mobo inspector.
It allows viewing the development model, expanded model and the implementation

46/ 58

system code (the resulting wikitextn the case that the final wikitext code differs
from the last upload state, a visual DIFF is displayed.

The mobo inspector also comes wautomatic documentation generation, using the
docsor®library. It displaysexemplaryforms through the jsoneditéflibrary, though

this is mostly to demonstrate the ability to generate forms from JSON Schema on a
more abstract level. It is n@replacement for viewing the forms on the end system

)
property:eindeutigkeitsKriterium hitp10.248 8 1/wikiiindex php/property:eindeutigkeitsKriterium
DIFF to last upload detected: [Removed: 5 |

<noinclude><div class="mobo-generated">This page is autogenerated, do not edit it manually!</div> [[Catego
ry:mobo-generated]]

</noinclude>==Description==

<div (lass:”des(r‘ipticn-hax"> der Name allein nicht eindeutig ist.</div>

* This is an attribute of the datatype [[Has type::Text]].

Wikitext result:

<noinclude><div class="mobo-generated">This page is autogenerated, do not edit it manually!</div> [[Catego
ry:mobo-generated]]

</noinclude>==Description==

<div class="description-box">Nur falls der Name allein nicht eindeutig ist.</div>

* This is an attribute of the datatype [[Has type::Text]].

imon Heimle

Figure 11: The mobo inspector

Mobo can generaterainteractive,graph-based visualization of thedevelopment
model To use this feature, the graph mobo generatesdsto be prepared by ap-
plying a graph layout algorithnfirst, however.This can be donevith Geph#?, a
graph analysis and visualization software

59 https://github.com/Ibovet/docson
80 hitps://github.com/jdorn/json -editor
61 http://gephi.github.io/

47/ 58

https://github.com/lbovet/docson
https://github.com/jdorn/json-editor
http://gephi.github.io/

Figure 12: The interactivegraph explorer, visualizing the development model

3.5.3 Model Development Tools

Mobo does not come wittustommodel development tools. JSON Schgespecidly
when using the YAML notatioris easy tawrite with standard text editos.

Personally, | prefer a text editor to visual tools when the markup is reasonable sim-
plel 6ve made good expe fandtheAtensedit@.irecgm-Su bl i me"
mend usinga YAML linterfor reattime syntax error feedbacknd the fuzzy file
finder for quickly navigatingthrough thedevelopment modgdroject

Using only a text editoresulted in a very fast and convenient model development
workflow for me personally

3.5.4 Helper Utilities

Mobo features a few helper utilitie¥he actual documentation of those utilities can
be found in the mobo user manéal

Nuker

The nuker moduleallowsto batchdeleteall wikipages of certain namespaces. This
comes in handy when prototypingn a development wiki system.

62 http://www.sublimetext.com/
63 hitps://atom.io/
Rhl nm Gdhl kdg+ qlnan cnbtldms > shnmP

48/ 58

