
ARC 2014 Submission 115

1

Development of a Modular JavaScript Data Display Framework

Simon Heimler
1

1
Faculty of Computer Science, University of Applied Sciences, Augsburg, 86161 GERMANY

Data visualization and representation is a very common task in the modern web and there are already a lot of specialized JavaScript

libraries in existence. This paper proposes the concept and the development of a new JavaScript framework with the current working

title “plastic.js”. Instead of focusing on some specific visualization tasks it will provide a very general approach to (1) aggregating, (2)

parsing and (3) displaying data. All those three main components are designed to be completely modular and easy to extend. As a

consequence, plastic.js is not meant to replace existing visualization libraries, but to provide a modular platform to integrate them into

a bigger framework. To the end-user, the plastic.js framework aims to provide an abstraction layer that contains all necessary

information within a HTML tag that can be easily embedded or generated in the style of Web Components. The complexity of the

visualization and the JavaScript logic should be hidden to the users by default. This creates a big benefit for them, since they don’t

have to research libraries, learn a scripting language and the usage of API’s.

Index Terms: Application programming interfaces, Data processing, Data visualization, Semantic Web, World Wide Web.

I. INTRODUCTION

he idea for this project came in the context of working

with Semantic MediaWiki (SMW) [1]. It is a common

task to output data in various formats. SMW has already some

default formats built in and there is an existing Result Format

Extension [2] that provides additional formats. The problem is

that those result formats are very tightly linked with the

system around it. To write a new result format the developer

has to know both about the client-side and the Server-side

architecture and programming languages.

One example: The aggregation and parsing of data happens on

the server side, the rendering of the result sometimes takes

place on the client-side, sometimes not. The data-aggregation

on the server side leads to another problem: Serving the site to

the user is delayed until the data is queried, calculated and

loaded, which can take a while depending on the complexity

of the process.

So there is a need for a “cross-platform” Data Display

framework. Ideally it should provide following features:

 It should work without having any dependency or

knowledge about the outer system in which it is

embedded in.

 It should have a modular architecture that allows

easily extending the framework, even at runtime.

 It should provide a simple API that abstracts away

most complexity. Ideally it should suffice to just

provide the data and the options without having to

write a single line of code.

My approach in solving those problems is the creation of

plastic.js [3] which runs completely on the client-side browser

and exposes an abstract and uniform API that hides most of

the complexity from the user. If it is used within a CMS, the

CMS just has to provide a thin wrapper around plastic.js that

leverages the API. Many different CMSs could share the same

framework and so the development effort.

At the time of writing plastic.js is in a working prototype

phase.

II. RELATED WORK

A. Generic Approaches

There are already a few projects that take the generic and

broader approach to this problem.

1) Spark

The most similar project would be Spark [4] which also stems

from the SMW Community. Sadly, it has been discontinued in

2012 and never made it beyond a prototype. But it shares the

main idea of using the HTML Markup as a simple API and

abstracts the complexity away very nicely. Spark doesn’t

support much result formats and also supports only RDF Data

as input source.

2) Sgvizler

Sgvizler [5] uses a similar approach using HTML Markup to

generate the Visualization. Like Spark it is limited to use only

one category of Input Data, which is querying Data from an

SPARQL Endpoint in this case. Sgvizler uses the Google

Visualization API to generate the output.

3) Vega

An interesting and more alternative project is Vega [6]. It is

generating Graphics from a single JSON file which contains

both the data and the options in a machine readable format

which serves as the abstraction layer. Vega uses D3.js to

generate the graphics.

B. Visualization Libraries

It does make only limited sense to compare plastic.js to

current visualization libraries, because they do not completely

share the field of application. Rather plastic.js provides the

bigger framework around those libraries. Still, most tasks that

plastic.js performs are currently done by using visualization

libraries.

Currently D3.js [7] is one of the most widely used and

recognized Data Visualization Libraries. In fact, D3 stands for

“Data Driven Documents”, which suggest it’s not just about

visualization but about the representation of data in general.

T

ARC 2014 Submission 115

2

This is one aspect plastic.js is going to adopt. D3.js also draws

a clear separation between data (Model) and the actual

rendered document (View). It is noteworthy that D3.js is a

rather low-level visualization library. This leads to great

flexibility but also requires the user to write actual code for

achieving even very simple tasks.

D3.js is one of the libraries that plastic.js is using to generate

visualizations.

III. CONCEPT AND ARCHITECTURE

Below follows a brief introduction to the concept and

architecture of plastic.js.

A. Programming Language

Since the framework should work independent from CMSs, it

has to be developed in the one common programming

language of the Web: JavaScript. The code will run solely on

the client-side in the browser. Different server side

applications could then just provide a thin wrapper that

integrates plastic.js into the specific system.

B. API

To provide a simple API plastic.js uses existing HTML

Elements and tags to enter the data and the options. Since the

input tends to be bigger data or option files in JSON format,

which usually have to be formatted with whitespace to keep

readability, plastic.js reads them from script tags. This has the

added advantages that code editors can cope with the data and

options well and that the input data is declared by the correct

mime-types.

This approach orients itself on some concepts of the emerging

Web Components Technology [8] which uses native HTML

Tags as an API / Abstraction Layer too. To implement a

plastic element the user has to provide an embed code. An

example is listed below.

<div id="table-ask-query" class="plastic-js"
style="height: 300px; width: 100%;">

 <script class="plastic-query" type="application/ask-
query" data-query-url="http://semwiki-
exp01.multimedia.hs-augsburg.de/ba-wiki/api.php">
 [[Category:Employee]]
 | ?Surename=Surename
 | ?Lastname=Lastname
 </script>

 <script class="plastic-options"
type="application/json">
 {
 "general": {
 "benchmark": true
 },
 "display": {
 "module": "simple-table",
 "options": {
 "tableHead": true
 }
 }
 }
 </script>
</div>

C. Modular Architecture

As plastic.js should be easily extensible, a modular and scaling

architecture [9] is needed. Currently there are three module

types implemented: Query Modules, Data Modules and

Display Modules. A module should only have access to the

information that it needs to do its job. To provide loose

coupling for the modules, the factory and facade pattern is

used to instantiate new modules. Additionally there is a global

and an element specific observer pattern to handle the

asynchronous events and provide further decoupling [10].

With the current architecture it should be easy to implement

an update mechanism that fetches new or additional data.

Figure 1: Modular structure from an (simplified) user perspective.

D. Asynchronous Architecture

1) Data loading

One big advantage of having all the code running on the

client-side is that queries and data aggregation can run in

separate and asynchronous processes. If there are multiple

plastic elements on a page, they run in parallel and do not

block themselves. That allows the site to load faster, especially

in regards to the “felt” speed the user perceives.

2) Dependency Management

Since plastic.js can “host” several existing visualization

libraries it has an asynchronously working dependency

manager. If a module has external dependencies, plastic.js first

aggregates them and lazy loads those which are actually

needed. This keeps plastic.js small in size and even more

modular.

IV. IMPLEMENTATION

A. JavaScript Style

Plastic.js is written to use the native prototype inheritance.

Every plastic element tag in the HTML will receive a plastic

element object instance. The modules are also written in an

object oriented fashion. If no instances are needed, the code

follows a simple singleton pattern.

B. Modular JavaScript

To provide modularity, plastic.js is divided into several files

which are concatenated for production use in the build

process.

ARC 2014 Submission 115

3

Figure 2 Project Structure

C. Challenges

1) Common Data format

One of the big challenges in developing this framework was to

decide on an internal data format, which has to work with

every incoming data type and also the “outgoing” display

modules. This proves especially difficult since the incoming

data could be in tabular structure, but also in a tree or even

graph structure.

Since the graph structure is the most flexible one and can

contain every other structure within, this seems to be a good

choice for an all-purpose data structure. However this leads to

choosing the most complex structure as the common

denominator and complicates originally simple data structures

significantly. The alternative would be to choose the simplest

common data storage type which can be a simple table. RDF

[11] has demonstrated that a complex graph can be stored as

triples in a simple three column table.

The decision was made to go with the simplest possible data

format that still allows for some flexibility. It consists of a

table where each table cell is an array of zero or more Strings,

Numbers or in some cases Objects. Objects provide further

flexibility since they can represent more complex Entities like

GeoCoordinates. But with the use of schemas – which will be

described below - even a simple type like a string can be

declared to be a date for example.

2) Usage of Data Schema

Often the incoming data has to be described so that a display

module can interpret and render it correctly. Putting that

information into the options would clutter them. It does make

more sense to keep the data description near the data which it

applies to.

Data Schemas are an elegant solution for this problem. They

are written in a data format itself and contain additional

information about the structure and semantics of the data.

Schemas are sometimes even bundled with the data itself,

which leads to self-describing data.

However there are many different approaches to schema

formats with varied complexity. The one that showed most

promise and the best tradeoff on flexibility and complexity is

JSON Schema [12] together with the additional validation

extension [13].

JSON Schema can describe both structure and basic semantics

of a JSON File or JavaScript Object. There is an important

distinction between data type and data format. The first

declares the basic data type how the attribute is stored. The

second describes the semantics and thus allows more

sophisticated validation and interpretation of the value. JSON

Schema is easily extensible so new custom formats and

custom attributes can be added.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "title": "Example",
 "type": "object",
 "properties": {
 "name": {
 "type": "string"
 },
 "date": {
 "type": "string",
 "format": "date"
 }
 },
 "required": ["name", "date"]
}

JSON-LD [14] was also evaluated but it proved to be

unnecessarily complex and more flexible than it has to be. It

may be still interesting as an incoming Semantic Web data

format.

Since the user should be able to write and provide data

schemas it has to be a simple format that requires little to no

prior knowledge about schema description. To provide this it

is planned to have an even more simplified “data description”

that is internally converted to a full JSON Schema object.

Some data sources include their schema by default. If this is

the case the data module has to parse those specific schemas

and convert them into the internal used schema format.

JSON Schema is also used internally to validate internal data

structures. Modules can easily implement validation of the

incoming data or options just by writing a validation object.

Writing validation logic as code is purely optional.

3) Options

The user has to provide a lot of options how the data should be

displayed. There are general settings which are shared

between all display modules but also options that are specific

to the display module that was chosen. Every module has to

declare and validate which the options it requires.

It was decided to use JSON to input those options. They are –

like the query – provided within a script tag.

D. Current project state

The architecture and internal ecosystem has been designed and

implemented. There are two query modules and data modules

ARC 2014 Submission 115

4

in existence which support querying and parsing data from

SPARQL and ASK (SMW) APIs. Until now, however, only

one display module is implemented yet, which supports simple

table output.

V. CONCLUSION

At the time of the writing plastic.js is yet in a very early

stage. The modular architecture has proved to be sufficient so

far. However, since there are not many modules implemented

yet it is hard to say if the architecture scales as well in the

future. The most interesting issue is the internal data format.

Will it work for all possible input and output formats that are

to be implemented?

Since plastic.js is a prototype and work in progress this has

still to be tested and evaluated. So far the project looks

promising.

ACKNOWLEDGMENT

I would like to thank my advisor professor Wolfgang

Kowarschick and the company Computer Bauer for making

my research project possible with their support. I’d like to

thank Yaron Koren for giving advice and contributing some

ideas.

REFERENCES

[1] SMW Community, Semantic MediaWiki. Available:

http://semantic-mediawiki.org/ (2014, May. 21).

[2] Jeroen De Dauw, Yaron Koren, James Hong Kong, Semantic

Result Formats. Available: https://semantic-

mediawiki.org/wiki/Semantic_Result_Formats (2014, May.

19).

[3] Simon Heimler, Sebastian Huber, plastic.js. Available:

https://github.com/Fannon/plastic.js (2014, May. 20).

[4] Denny Vrandečić, Andreas Harth, Spark. Available:

http://km.aifb.kit.edu/sites/spark/.

[5] Martin G. Skjæveland, “Sgvizler: A JavaScript Wrapper for

Easy Visualization of SPARQL Result Sets,” 9th Extended

Semantic Web Conference, http://2012.eswc-

conferences.org/sites/default/files/eswc2012_submission_303

.pdf.

[6] Kanit Wongsuphasawat, Vega: A Visualization Grammar.

Available: http://trifacta.github.io/vega/ (2014, May. 19).

[7] Michael Bostock, Vadim Ogievetsky and Jeffrey Heer, “D3:

Data-Driven Documents,” 2011.

[8] Dominic Cooney and Dimitri Glazkov, “Introduction to Web

Components,” W3C, 2013.

[9] Addy Osmani, Patterns For Large-Scale JavaScript

Application Architecture. Available:

http://addyosmani.com/largescalejavascript/ (2014, May. 19).

[10] A. Osmani, Learning JavaScript design patterns. Sebastopol,

CA: O'Reilly Media, 2012.

[11] Guus Schreiber and Yves Raimond, “RDF 1.1 Primer,” W3C,

2013.

[12] Francis Galiegue, Gary Court, JSON Schema: core

definitions and terminology. Available: http://json-

schema.org/latest/json-schema-core.html (2014, May. 19).

[13] ____, JSON Schema: interactive and non interactive

validation. Available: http://json-schema.org/latest/json-

schema-validation.html (2014, May. 19).

[14] Markus Lanthaler, Gregg Kellogg, and Manu Sporny,

“JSON-LD 1.0,” W3C, 2014.

