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Abstract 
As we developed a knowledge management system for Computer Bauer GmbH, we 
soon reached some limits of our chosen target platform, Semantic MediaWiki. Those 
limits were not missing features, but the increasing costs of developing and main-
taining our rather complex model. 

For that reason, I chose to build a tool that supports the development process by 
generating the final implementation code from a simpler, more abstract and object 
oriented model.  

However, I didn’t want to obtain the full complexity of conventional model-driven 
approaches. Instead, I’ve developed an approach that is as simple as possible while 
still meeting our modeling requirements. As the approach uses a schema language 
to describe the development model, I’ll call the approach Schema-Driven Develop-
ment (SDD). 

In the theoretic part of this thesis, I’ll introduce this approach on a generic and the-
oretical basis. Terms are defined; benefits and concepts from MDE/MDA are evalu-
ated and put in context to the SDD approach. The main subject of the theory chapter 
is the use of a schema language as the primary model language and my proposal for 
a modular generator architecture. 

The praxis part puts the discussed theoretical foundations and proposals into prac-
tice. It documents the development and technological decisions of my own SDD gen-
erator and its domain specific language based on the previously introduced princi-
ples and architecture. I decided to use JSON Schema as its schema language and 
YAML/JSON as the notation format.  

I’ll also evaluate how the SDD approach worked regarding the chosen target plat-
form and our modeling requirements. It turned out to be well suited for our specific 
use case. It made an agile, rapid prototyping workflow possible that we as a team 
found very useful and led to a successful realization of our project. 

Keywords: MDE, Model-Driven Engineering, MDD, Model-Driven Development, 
SDD, Schema-Driven Development, JSON Schema, Knowledge Management, Se-
mantic MediaWiki, MediaWiki, Node.js 
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 Introduction 

This chapter introduces the subject of the thesis. I’ll also explain the moti-

vation and some of the applied basic principles behind this thesis. 
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 Preface 

“I” refers to the author of this thesis, Simon Heimler. 

“We” refers to my company Computer Bauer GmbH, especially Mathias Bauer, 
Moritz Abraham and Sebastian Schlegel, my advisor Prof. Dr. Wolfgang 
Kowarschick and, myself.  

I’d like to thank them for their support and pleasant teamwork. Thanks to Moritz 
Abraham and Yaron Koren for proofreading. 

I dedicate this work to my daughter, Sarah Heimler. 

 Background 

This is my master thesis of the university course Master of Applied Research (MAPR) 
in Computer Science. Since it is currently a rather unusual degree, let me give you a 
short description first: 

The MAPR is an applied research and industry oriented degree, split into a part-time 
master study, and part-time (paid) job for a cooperating research facility or com-
pany. The student has the freedom to choose fitting lectures and seminars and writes 
the master thesis on the subject of his work. 

In my case, the cooperating company is Computer Bauer GmbH, an IT company 
providing hosting services for tax consultants, located in Munich, Germany.  

The assignment from the company was to build a structured and integrated 
Knowledge Management System that handles IT Management information, CRM 
and general company knowledge. 

The combination of research and application also influenced the structure of this 
thesis. Chapter 2 lays the theoretical groundwork of the project. The theory is 
grounded and evaluated through practice, which will be discussed in Chapter 3. 

 Motivation 

To implement an internal knowledge management system for the company, we 
chose to use Semantic MediaWiki. Soon after we started developing the first drafts 
of our model, we reached a point where the model became increasingly hard to ad-
minister and maintain. It became difficult just to notate the model - visual represen-
tations were only helpful to a certain point. Since we were in a completely theoret-
ical conceptualization phase, we could also not be confident about our decisions and 
their consequences. 
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To overcome those problems we needed a way to notate our development model in 
a scalable, abstract, and concise way. In order to ensure we made the right decisions, 
we would like to view, test and evaluate them in an actual working system. 

With the chosen technologies, this approach would have been difficult, time con-
suming and error prone. Therefore, I started to develop a new toolset called mobo1 
that provided the workflow and agility we needed for our project. 

The main technological decision that drives the workflow is the use of model-driven 
development techniques. I wanted the system to be as simple and easy as possible, 
especially since I had to develop it on my own besides the actual task of model-
ing/creating the KMS for Computer Bauer. 

Therefore, I have started to write a MDE system from scratch, using much simpler 
technologies and concepts that are usually common. Because this approach goes a 
few unusual routes, I would like to introduce a new term for it: Schema-Driven De-
velopment (SDD).  

This approach, in both theory and practice, will be the main topic of this thesis. 

 Principles 

1.4.1 Introduction 

There are a few principles (some are a matter of taste) that have guided my decisions, 
regarding the choice of technologies and architecture I propose in Chapter 2 and 
Chapter 3. 

To understand those choices better, let me introduce the principles first.  

1.4.2 Do One Thing and Do It Well 

There is a commonly known UNIX maxim: “Do One Thing and Do It Well”, coined 
by Doug McIlroy2. The principle leads to many modular but highly specialized tools 
that develop their true potential when being used together. 

This is the reason SDD focuses on data schemas as the model basis. Because the 
scope is limited, the system does not need to support every eventuality.  

Of course, this restricts the SDD approach to some areas (or subareas). However, it 
is possible to combine it with traditional software development or MDE techniques, 
if the field of application can be sufficiently isolated.  

                                                 

1 Simon Heimler, mobo 

2 M. D. McIlroy, E. N. Pinson, B. A. Tague, ‘Unix Time-Sharing System Forward’, 1902 
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1.4.3 Strive for Simplicity, stack necessary Complexity 

When solving a problem, the simplest solution is preferable. 

The only way to avoid these traps is to encourage a software culture that 
knows that small is beautiful, that actively resists bloat and complexity: an 
engineering tradition that puts a high value on simple solutions, that looks 
for ways to break program systems up into small cooperating pieces3  

There are occasions where more complex concepts and technologies may become 
necessary. This can easily hurt the simplicity principle through over-engineering.  

To avoid this pitfall, the more complex technologies and concepts should always be 
built on top of the simpler ones. The more elementary parts should have no depend-
ency to the more complex ones and should be sufficient for the simpler tasks. 

This leads to a system, where the level of complexity can be adjusted/chosen to the 
level that is actually needed. It also enforces a more elegant architecture, forcing the 
system architect to abstract, simplify and modularize. 

1.4.4 Reuse of existing standards and tools 

Reusing and adjusting already established standards has a couple of benefits. For 
one, those standards have usually already been field-tested. Depending on the dis-
tribution of the software or standard, many developers are already familiar with it. 
This makes it more likely that they find and try your system. 

Even if developers choose to learn those standards in order to use your system, they 
gain benefits by learning a standard that they can use and apply in different contexts. 

  

                                                 

3 Eric Steven Raymond, The Art of Unix Programming, 40 
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 Schema-Driven Development 

Theory: This chapter introduces the concept and the term Schema-

Driven Development (SDD). It will discuss how it relates to the concept of 

Model Driven Engineering (MDE). 

I will also propose a modular SDD software architecture that lays the 

foundations for Chapter 3. 
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 Introduction 

There are already various terms for the type of approach I’m proposing in circula-
tion. So why add another one? The first reason is that most of those terms already 
occupied with certain technologies and approaches. Second, some of these terms do 
apply, but are very broad and therefore rather nondescriptive. 

To give this approach some distinction and theoretical backbone, I’d like to introduce 
a new term and concept: Schema-Driven Development. 

I am not the inventor of this concept. There are already projects that use a schema-
driven approach, like Swagger4. I couldn’t find a distinctive theory or awareness of 
this approach, so here we go. 

 Schema-Driven Development 

A definition of this approach could be: 

Schema-Driven Development uses annotated data schemas, which specify 
the expected data structures, as models to generate system artifacts (code, 
documentation, tests, etc.) automatically.  

It is a greatly simplified and data-centric subset of Model-Driven Engineering.  

SDD is not general purpose and thus not meant as a substitution for MDE in general 
or even ordinary programming languages. Instead, by adhering to the niche of 
schema-oriented use cases, it can stay simple and specialized. It should be therefore 
quick to learn and apply, especially compared to traditional MDE approaches. This 
turns it into an interesting candidate for use cases where those would be too difficult 
or expensive to implement. 

Appropriate fields of application may be the (partial or complete) generation of APIs 
and various CRUD applications like CMS and KMS.  

 MD* 

Before heading into the details on the Schema-Driven Development approach, I’d 
like to introduce the basic principles of Model-Driven Engineering (MDE) and the 
like (I’ll subsume the various acronyms to MD*). I will also put them in relation to 
the proposed SDD approach. MDE is a broad topic on its own, so I will not go into 
much detail however. While familiarity with the subject is helpful, it is not required 
to understand the SDD approach.  

                                                 

4 http://swagger.io/  

http://swagger.io/
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There are numerous terms in use. Commonly used are Model-Driven Engineering 
(MDE) and Model-Driven Development (MDD). Moreover, there is the Model Driven 
Architecture5 (MDA), which is a specific approach advocated by the Object Manage-
ment Group (OMG) since 20016.  

SDD is a subset of MDE and MDD. While SDD can be classified as a specific flavor 
of Model Driven approaches, most Model-Driven approaches are not Schema-
Driven. 

SDD does not meet the criteria to count as a MDA approach. MDA assumes the use 
of specific standardized technologies like MOF7 and UML8 and prescribes a certain 
architecture – which SDD does not. Similar to MDA, SDD is opinionated regarding 
its choice to use schema languages as modeling basis. Contrary to MDA, it doesn’t 
prescribe the concrete technologies to be used. 

 MDE
 MDD

 MDASDD

 

Figure 1: SDD in context to the various MD* acronyms 

All the previously mentioned terms include Model-Driven. Let’s review what this 
means: 

The term Model (and therefore modeling) is very generic: 

Modeling, in the broadest sense, is the cost-effective use of something in 
place of something else for some cognitive purpose. It allows us to use some-
thing that is simpler, safer or cheaper than reality instead of reality for 
some purpose. A model represents reality for the given purpose; the model 
is an abstraction of reality in the sense that it cannot represent all aspects 
of reality. This allows us to deal with the world in a simplified manner, 
avoiding the complexity, danger and irreversibility of reality.9  

                                                 

5 OMG, ‘MDA Guide Version 1.0’ 

6 Truyen, ‘The Fast Guide to Model Driven Architecture’, 2 

7 OMG, ‘Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specification’ 

8 Cook, ‘OMG Unified Modeling Language’ 

9 Rothenberg, The Nature of Modeling, 1 
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The main purpose of using models is therefore to tame complexity by raising the 
level of abstraction. They can also be used to reduce the problem to certain, special-
ized viewpoints. 

In this broad sense, even high-level programming languages are models of the re-
sulting machine code. Programming in C is therefore a kind of model-driven devel-
opment. When people are talking about MDE, they of course assume a higher ab-
straction level of the model than the one of current programming languages.  

The approach is Model-Driven, because the model is not only used for conceptual-
ization or illustration purposes10. 

It is model-driven because it provides a means for using models to direct the 
course of understanding, design, construction, deployment, operation, 
maintenance and modification.11 

To sum it up: 

Model-Driven Development (MDD) is a development paradigm that uses 
models as the primary artifact of the development process. Usually, in MDD 
the implementation is (semi)automatically generated from the models.12  

MDE technologies and standards have been researched, developed and standardized 
for a long time. With their standardization process and rising flexibility, they also 
got more complex, up to a point where it is difficult to weight the cost of learning 
those technologies to the benefits. The more intricate technologies often require ad-
ditional (and often proprietary) tooling support in order to be used in a productive 
way. 

Schema-Driven Development is a type of MDD that explicitly defines data schemas 
as the modeling basis. Because of that constraint, it can afford to be simpler.  

The goal of SDD is to reach many (or most) benefits of the MDE ap-
proach, while reducing the complexity of the approach itself to a 
reasonable small amount. 

Since schema languages are usually text based and relatively simple in nature, tool-
ing support can become optional and a matter of taste. 

                                                 

10 Stahl, Modellgetriebene Softwareentwicklung, 11 

11 OMG, ‘MDA Guide Version 1.0’ 

12 Brambilla, Cabot and Wimmer, ‘Model-Driven Software Engineering in Practice’, 9 
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 Benefits of SDD 

Why should developers use a schema-driven approach instead of the common and 
well-understood traditional software development? There are many benefits13, 
which also apply to model-driven approaches in general.  

Let me briefly introduce a few of them. 

2.4.1 Simplification through Abstraction 

The main reason for using models instead of implementation code is that they have 
a much higher level of abstraction. The models can therefore be simpler, more con-
cise and focused. In case of schema languages, the models are solution oriented – 
they describe the expected or required data structure. 

Because the building blocks are simpler and more generic, it is possible to reuse them 
easier. The model can therefore be very DRY (Don’t repeat yourself)14.  

Complex systems can also become very overwhelming to the people who have to 
develop, maintain and therefore understand them. Taming that complexity reduces 
the mental demand of those tasks. 

2.4.2 Less Error-prone 

Because of the higher abstraction level, developing the model is simpler and requires 
fewer lines of code. Therefore, there is less to do wrong.  

Likewise, it is easier for the computer to detect errors when the model can be ana-
lyzed for consistency according to some defined rules and introspection. By using a 
generator, there is an additional compilation step (from model to implementation 
code) where validation can happen.  

2.4.3 Faster and more Agile Development 

Because of the simpler model and better validation, the development speed can in-
crease drastically. This makes the use of agile development methodologies much 
more feasible. 

Of course, there is not only the effort of developing the model. If no generator soft-
ware exists, it needs to be developed first or parallel to the model. The cost of this 
and the benefits of model-driven development has to be weighted. There are cases 
where the effort might not be worth it, especially when the use case is too compli-
cated or specialized. 

                                                 

13 Johan den Haan, ‘15 reasons why you should start using Model Driven Development’ 

14 Hunt and Thomas, The pragmatic programmer 
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In the case that the project is very complex and hard to maintain with traditional 
development or a lot of similar software has to be developed repeatedly, MDE has 
the potential to save a lot of effort in the long term. 

2.4.4 Reuse and Migration 

Models and Data in general also often have a much longer life span than the software 
that created / uses it itself. If they are generic enough, they can be used and reused 
in many ways – even originally unintended ones. 

There might be the case that the end system changes or might even be replaced. If 
the model is generic enough, the programmers could adjust the generator to the new 
requirements and the old model will work with the new system as it is. 

This also means that systems developed through models can get improved features 
or performance just by updating the generator software and compiling it again. 

2.4.5 Separation of Concerns 

In MDE, the domain knowledge and the implementation logic/details can be sepa-
rated. Most of the complicated implementation will go into the generator software 
itself. People with much less (or none at all) software development skills can develop 
the model, because much of the implementation complexity is outsourced to the gen-
erator. 

The model itself can be separated to different viewpoints, each focusing on a differ-
ent aspect of the system. 

2.4.6 Code Quality 

The generator works by definite rules on how to transform the model into the final 
code. Because of that, the resulting code will always be consistent. Improving the 
generator transformation logic does automatically improve the code quality of the 
complete result without having to refactor the model itself. 

Updates of the generator could then introduce new features and improvements to 
the quality and performance of the code. In many cases, it is sufficient to recompile 
the old model with the updated generator and the improvements are applied. 

 Using a Schema Language as Model 

2.5.1 The Schema Language 

Obviously, a choice has to be made as to how the model should be written. This splits 
usually into two decisions: The notation format (syntax) and a given standard how 
to structure the content, the schema language. 
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In case of Schema-Driven Development, a few standardized formats specialize in 
describing expected data structures. The most commonly known are probably XML 
Schema15 (XSD) that is notated in XML16 and JSON Schema17 that is notated in JSON18. 

Because data schemas are usually written in the same data format the schema de-
scribes, this leads to an interesting feature: They are capable of self-description. This 
implies that a data-schema can describe itself by using its own capabilities. The spec-
ification of the schema language can be written in the schema language19. 

With SDD, we choose to use data schemas to describe expected data structures 
within the implementation system. The Generator also needs to define the expected 
data structure of the model through a schema. It is referred to as the meta-schema, 
as it describes the schema itself.  

If the schema language has a specification, it is the meta-meta-model. It describes 
how both models and meta-models need to be structured.  

To sum it up: the model schema validates the resulting data in the end system; the 
meta-schema validates the model schema, and everything can be validated against 
the meta-meta-schema, since all of them are written in the same schema language. 

Meta-Meta-Schema

Schema Language 
Specification

Meta-Schema

validates

extends

Schema

validates

extends

Domain Specific Language
Generator Schema

Development Model Resulting Datasets

Data Entities

validates

 

Figure 2: The schema hierarchy  

Initially, this might sound complicated and abstract. In practice, it is a very elegant 
and simple way to use only one schema language for modeling purposes – on the 
model side as well as on the generator side, from bottom to top. 

While the meta-meta-schema is already specified, the meta-schema most likely 
needs to be custom developed according to the given requirements and chosen target 
platforms.  

                                                 

15 David C. Fallside, Priscilla Walmsley, ‘XML Schema Part 0: Primer Second Edition’ 

16 Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, ‘Extensible Markup Language (XML) 1.0 (Fifth Edition)’ 

17 Francis Galiegue, Kris Zyp and Gary Court, ‘JSON Schema’ 

18 Douglas Crockford, ‘The application/json Media Type for JavaScript Object Notation (JSON)’ 

19 Example: http://json-schema.org/draft-04/schema  

http://json-schema.org/draft-04/schema
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2.5.2 Domain Specific Language Development 

The Meta-Schema is a Domain Specific Language (DSL). DSL are not general-pur-
pose languages, but designed for specific use cases, describing certain domains.  

A domain-specific language (DSL) is a programming language or executa-
ble specification language that offers, through appropriate notations and 
abstractions, expressive power focused on, and usually restricted to, a par-
ticular problem domain.20  

In many cases, it is not sufficient to describe the only the data structure itself. The 
generator might need some more hints. It is also useful if some standard behavior 
could be adjusted or overwritten. 

To do this, the data schema can be annotated with that information. I’d like to pro-
pose three main categories for classifying these according to their specificity.  

There are also two internal categories which are specific only to the generator itself 
and therefore do not fall within the three other categories. 

Intermediary 
Specifics

Internal 
Metadata

Domain
Specifics

Platform
Specifics

Implementation
Specifics

Generic                                                                            Implementation SpecificInternal 

Domain Specific Language

 

Figure 3: From domain specifics to implementation specifics 

Domain specifics will therefore be transformed to platform specifics, increasing the 
proximity to the implementation system. Properties that are more specific will al-
ways override less specific properties, however.  

I hope the term DSL is not confusing in this context, as it also includes platform- and 
implementation specifics. The DSL is the sum of all the proposed categories, because 
it serves as the container language to declare all those specifics. 

2.5.3 Domain Specifics 

Domain Specifics are independent from the technical implementation and describe 
the subject in terms domain experts use. Since SDD has data centric use cases, the 
chosen Schema Language already brings a vocabulary to describe data structures. 
They can be counted as domain specific and provide a free, domain specific base 
vocabulary to build upon. 

                                                 

20 Arie van Deursen, Paul Klint, Joost Visser, ‘Domain-Specific Languages - An Annotated Bibliography’ 

http://www.dict.cc/englisch-deutsch/specificity.html
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In MDA terms, the domain specifics (or domain model) is a mix between the Com-
putational Independent Model (CIM)21 and the Platform Independent Model (PIM)22.  

2.5.4 Platform Specifics 

Platform specifics contain information that are specific to a certain target (software) 
platform. They directly translate into options, functions or concepts of the platform. 
Using platform specifics therefore delegate the duty of defining an API from the DSL 
to the target platform. 

A platform model provides a set of technical concepts, representing the dif-
ferent kinds of parts that make up a platform and the services provided by 
that platform.23 

2.5.5 Implementation Specifics 

The Implementation Specifics already use the target language and need not to be 
transformed by the generator anymore. They can be utilized to overwrite or add 
code directly. This is a two edged sword, however: 

On the one hand, this enables the model to be completely flexible, since everything 
that cannot be modeled can be added or overwritten in the implementation language.  

On the other hand, everything that is implementation specific is outside the code 
generator and therefore cannot be inspected, validated or optimized on the same 
level as the rest of the model. 

I recommend always using the least specific way necessary to 
achieve a modeling goal in order to maximize the benefits of the 
model-driven approach. 

2.5.6 Intermediary Specifics 

In the case, that any dynamic functionality needs to be added, intermediary-specific 
attributes must be introduced. The intermediary layer applies the logic, which the 
intermediary specific attributes define, to the model. After they are processed, the 
helper attributes can (or should) be removed.  

                                                 

21 OMG, ‘MDA Guide Version 1.0’, 15 

22 OMG, ‘MDA Guide Version 1.0’, 16 

23 OMG, ‘MDA Guide Version 1.0’, 16 
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Intermediary specifics make it possible to support dynamic and advanced features, 
which the chosen schema language does not support by itself. Because the interme-
diary layer removes those features after they are applied, the resulting model is 100% 
compatible with the schema language specification again. 

If an intermediary layer is given, it is therefore possible to introduce features to the 
development model that are not compliant with the schema language specifications 
but still helpful for the development process. This is of course a design decision 
whether to break that compliance or not. 

Paragraph 2.6.3.3 will further explain the intermediary layer and gives some exam-
ples of possible features.  

2.5.7 Internal Metadata  

Internal metadata have no impact on the generated implementation code. They are 
strictly behind the scenes and hidden to the user. Possible applications are internal 
helper variables, debugging or statistics. 

2.5.8 Separation of the Specifics 

In MDA, the model itself is divided into four categories. This might be helpful with 
big teams with distributed responsibilities. However, this also implies that more 
models need to be maintained and kept consistent to each other. 

A simpler approach is to prefix the attributes according to their specific role and 
declare in the Meta-Schema to which category they belong. One model can then 
contain all those information at the same time.  

If a custom editor tool is utilized, it could then still limit the viewpoints according to 
roles and permissions. 

2.5.9 Side Note: Semantics 

In some cases, annotated data schemas may not be expressive enough. In those cases, 
the SDD approach might not be the best way to go.  

In my project, I did not have to go beyond schemas. In the case, that more advanced 
expressiveness is necessary, I’ve thought about adding an additional “semantic” 
layer on top of the schema layer.  

This way, the more basic requirements can be achieved through the much simpler 
schema languages and the more complex problem can be solved with semantic lan-
guages, like description logics. This would conform to the principle of stacked com-
plexity. In case of JSON Schema, this would mean to embed JSON-LD to express 
additional semantics, while the hard validation still happens on the schema level. 
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 Architecture of the Generator 

2.6.1 Overview 

The generator is the software that loads the model, transforms it and outputs the 
final implementation code.  

Based on my experiences with building a SDD generator, I’d like to propose the fol-
lowing architecture shown in Figure 4. It is a flexible proposal, containing several 
optional components (drawn with dotted lines). 

It is not necessary to implement the full architecture to get started. In fact, mobo 
started with a few proposed layers missing, which were added later as the project 
grew. 

In the simplest implementation, the development model is identical to the expanded 
model. No model-to-model transformation layers are used. The development model 
is directly transformed into the implementation code. In this case, the generator is 
not much more than a template engine or XSLT Transformations24. 

                                                 

24 Henry Zongaro, Andrew Coleman, C. M. Sperberg-McQueen, ‘XSLT and XQuery Serialization 3.0’ 
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Figure 4: Proposed modular architecture of the generator 

2.6.2 Input 

The generator reads the development model from the file system. Afterwards, it uses 
a parser (depending on the notation format) to convert the schema documents into 
an adequate internal data structure (depending on the programming language of the 
generator). 

Note that it is possible to support different notation formats by providing multiple 
parsers, as long as the structure of the schema document stays consistent.  
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2.6.3 Model to Model Transformations 

 Model Expansion 

The development model should be as abstract, concise and non-redundant as possi-
ble to be convenient to use and manage. The generator itself has different require-
ments, though. First, verbosity and duplicated information are not an issue when 
they are programmatically introduced. However, they can be very convenient from 
a programming perspective, especially when accessing data.  

For example, implicit properties from the model can be explicitly created through 
some clearly defined rules. That way, the user doesn’t have to write them (and keep 
them maintained) and the generator can still depend on their existence and has not 
to infer them repeatedly. 

Therefore, in this stage the input model is repeatedly transformed to yet another, 
expanded (usually less abstract and more verbose) model. This stage can be called 
the model expansion phase and the resulting model the expanded model. The JSON 
LD standard25 uses a similar concept, which they call the expanded document form.  

There are languages that are specifically designed for this job like QVT26 from the 
OMG. It is also possible to use common programming languages for those transfor-
mations – in the simplest case the same language the generator is written in. 

 Compatibility Layer 

The first proposed step is to add an optional compatibility layer that transforms out-
dated and deprecated features of older models back to the latest standard. This be-
comes useful or even necessary, when new features need to be added to the genera-
tor without breaking older models immediately.  

The compatibility layer can also notice the user about the changes they have to make 
in order to be compliant with the latest standard. 

 Intermediary Layer 

The optional intermediary layer introduces helper functions that make writing the 
development model easier and more dynamic. After the intermediary specific anno-
tations are applied, they can be removed. The expanded model (after the transfor-
mation) is then completely compatible with the original schema specification.  

Features that rely on dynamic logic would make an intermediary layer necessary: 

                                                 

25 Manu Sporny et al, ‘JSON-LD 1.0’ 

26 OMG, ‘Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specification’ 
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The intermediary layer could for example implement custom inheritance and return 
the expanded model (where the inheritance has already been applied) as the trans-
formation result. This provides a good example where the development model can 
be non-redundant while the expanded model contains a lot of duplicated and verbose 
information. 

Other interesting features would be internationalization, dynamic code injections, 
templating capabilities in the development model itself, etc. 

 Platform Layer 

The generator may include any number of platform layers, depending on how many 
platforms are supported. This layer will transform the generic domain specifics to 
platform specific information.  

This is an optional preparation step to pre-optimize the model for the code genera-
tor. Those transformations could also be done in the code generator itself, but if they 
can be implemented as model-to-model instead of model-to-text transformations, it 
makes more sense to put them in this layer. 

 Expanded Model 

The result of the model-to-model transformation phase is the expanded model. It 
should be 100% compliant to the schema language chosen and contain additional 
metadata. It is machine-optimized whereas the development model is human-opti-
mized. 

2.6.4 Model to Text Transformation 

 Code Generator 

The expanded model is the foundation that the following model-to-text transfor-
mation uses to generate implementation code. 

The generator can support one or more code generators – one for each platform that 
needs to be supported. 

There are many ways code can be generated from models. It is of course possible to 
write the logic in an ordinary programming language, just concatenate the resulting 
code and write it to a big text file. 

It is also possible to use template engines that specialize in this task. Template en-
gines take a text file, written in the desired target language and inject template tags 
for custom logic and inserting variables. They are usually (and intentionally) limited 
in how much logic and complexity they allow within a template, however.  
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Personally, I recommend a hybrid approach. More advanced template engines can 
be extended by writing new custom functions. Those are programmed in the same 
language the template engine itself is written in. Application-specific custom func-
tions therefore improve the modularity and flexibility of the template engine. 

This way, templates can use the standard functionality of the template engine where 
it is sufficient and custom functions where not. Custom function are also a good 
choice when the default capabilities become too complicated and inconvenient. 

 Implementation Code 

The resulting code is the implementation code.  

As a last step, the generator could now apply coding guidelines and styles by using 
a code beautifier and similar libraries. 

2.6.5 Output 

Depending on the requirements, the generator can output the implementation code 
as text files on the file system and/or handle the deployment by itself. 

If the generator handles the deployment, it can generate/update the end-system in 
real-time, allowing for an agile, prototyping workflow. It would also allow running 
automated tests against the deployed end-system in case that this feature is a part of 
the generator.  

 Tooling 

2.7.1 Validation 

Validation of the model is a very useful feature that helps improving the quality of 
the end system and the development speed, as errors can be found much faster. The 
generator can provide Validation on many different levels: Syntax (1), Structure (2) 
and Semantics (3). 

The input stage of the generator will use parsers to read the development model. 
Nearly all parser libraries already come with error feedback in case of syntax errors. 

Since the meta-schema is written in the same schema language as the model, the 
development model can be validated against the meta-schema. This will detect struc-
tural errors. 

It is also possible to implement custom logic that also looks for semantic errors, 
where the model may be syntactically and structurally correct but makes no sense 
from a domain perspective. 
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The resulting implementation code can also be validated using linters, compilers or 
(auto generated or already existing) unit-tests. 

2.7.2 Model Inspection Tools 

The generator might come with some tools that help users to understand and inspect 
the state of the model. This could include viewing the model in its various stages 
(development model, expanded model and implementation code), a visual represen-
tation, general documentation, etc. 

2.7.3 Model Development Tools 

The fact that data-schemas are usually text based, allows the straightforward use of 
version control systems like Git. It also means that the development model can be 
written with common text editors and IDE’s. Specialized tooling can therefore be-
come unnecessary or at least optional. 

It is a matter of preference whether to use visual tools or text based tools. Some tools 
help with creating data-schemas in a visual way, like Altova XMLSpy27 or JSON 
buddy28. 

In some cases, it might also be a good idea to write a custom editor that is explicitly 
optimized for use with the developed generator. 

2.7.4 Helper Utilities 

The generator can use the information from the development model for more than 
just generating the implementation system.  

There could be utilities like programmatic data imports and synchronization. Ran-
dom test data29, based on the model schema, can be automatically generated. The 
model can also be used to validate or assess the quality of the existing data in the 
end system. There are a lot more possibilities. 

 Knowledge Requirements 

2.8.1 From Generator Developer Perspective 

The developer of the SDD system needs to choose and learn at least one data nota-
tion format. Those are usually very simple and most developers know a few of them 

                                                 

27 http://www.altova.com/xmlspy.html  

28 http://www.json-buddy.com/  

29 Example: Random data from annotated JSON Schema: http://schematic-ipsum.herokuapp.com/  

http://www.altova.com/xmlspy.html
http://www.json-buddy.com/
http://schematic-ipsum.herokuapp.com/
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anyway. A decision has also to be made which schema language to use. Those vary 
in complexity - JSON Schema is arguably simpler than XML Schema. 

The generator can be written in a programming of choice.  

The Domain Specific Language (DSL), in our case the meta-schema, has to be devel-
oped. Since the DSL is written in the schema language itself, it makes considerable 
sense to develop a documentation generator that generates the API Docs automati-
cally.  

Some optional technologies can be used if they seem appropriate: Template Engines, 
Transformation Languages etc. 

2.8.2 From User Perspective 

The user of the SDD software (a domain expert, or a technical platform expert) does 
not need to understand the Generator and the inner workings of it. He has to under-
stand the following technologies and concepts: 

If no specialized editor (tooling) is available, it is mandatory to be write syntactically 
correct models. Fluency with the chosen data notation format is therefore the most 
basic requirement. It is also important to understand the structure and concepts of 
the chosen data schema language. 

The Domain Specific Language and its features must be learned, too. It is vital to 
have a decent documentation, since it is specific only to the generator itself. Docu-
mentation about those features cannot be found elsewhere. 

Depending on how deep the users goes into the technical implementation, under-
standing of the target platform it is helpful to mandatory.  
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 Generating Semantic MediaWiki 

Structure with SDD in practice 

Praxis: Using the Schema-Driven Development approach to develop and 

generate the structure of Semantic MediaWikis. An extended, object ori-

ented JSON Schema is used as the schema language. 
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 Introduction 

This chapter puts the proposed theory and architecture of Schema-Driven Develop-
ment into practice.  

My SDD generator implementation has the name mobo30. It is written in JavaScript, 
runs as a CLI application and can be easily downloaded and updated as a NPM pack-
age31.  

Mobo is cross-platform and open source32. 

 

Figure 5: Screenshot of the mobo CLI application 

The user documentation, including tutorial and auto-generated DSL documentation 
is available at GitBook33. 

 The Target Platform 

3.2.1 Introduction 

The target system is a Knowledge Management System (KMS). Mobo targets the 
features of some extensions in addition to the base system itself.  

                                                 

30 Simon Heimler, mobo 

31 https://www.npmjs.com/package/mobo  

32 https://github.com/Fannon/mobo  

33 Simon Heimler, ‘mobo documentation’ 

https://www.npmjs.com/package/mobo
https://github.com/Fannon/mobo
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Allow me to give a brief introduction on the most important parts and aspects of our 
target system. For a more comprehensive introduction, I recommend reading the 
book “Working with MediaWiki”34. 

3.2.2 MediaWiki 

The chosen base system is MediaWiki35 (MW). It is a free, open-source KMS that 
follows the wiki approach. MW is widespread, well established and has a broad com-
munity of users and developers. The system has already proven its stability and 
scalability by powering Wikipedia.org.  

3.2.3 Semantic MediaWiki 

MediaWiki itself has only rudimentary features to store and retrieve structured in-
formation; its core strength lies in the management of unstructured text. Some struc-
ture can be achieved through the definition and use of templates, but they will only 
be stored in plain text, nevertheless. 

This is where Semantic MediaWiki36 (SMW) comes in. SMW adds the capability to 
store and query structured data within MW. It provides a notation that allows de-
claring facts, either within templates or within free wikitext. That information is 
stored in a flexible, graph-oriented structure. SMW comes with a simple (but limited) 
query language, called ASK which allows to retrieve and reuse those facts. 

SMW makes use of Semantic Web Technologies. For example, it can additionally use 
a Triplestore together with the W3C standardized query language SPARQL37. This 
provides powerful querying and even reasoning capabilities, accessible through a 
RESTful API.  

3.2.4 Semantic Forms 

While SMW introduces structured storage of information, it can only be entered by 
writing wikitext markup. To ensure a better user experience and enforce a desired 
structure of the information, the Semantic Forms38 extension (SF) allows defining 
custom web forms. 

Those forms support basic validation, auto completion depending on existing data 
and various input widgets.  

                                                 

34 Koren, Working with MediaWiki 
35 Wikipedia, ‘MediaWiki’ 

36 http://semantic-mediawiki.org/  

37 Andy Seaborne and Steven Harris, ‘SPARQL 1.1 Query Language’ 

38 https://www.mediawiki.org/wiki/Extension:Semantic_Forms  

http://semantic-mediawiki.org/
https://www.mediawiki.org/wiki/Extension:Semantic_Forms
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3.2.5 Challenges and Peculiarities 

 Wikitext as target language 

MediaWiki uses its own markup language, wikitext. Wikitext markup can be ex-
tended through custom functions, templates, magic words, etc. A good example is 
the ParserFunctions39 extension, which adds a lot of programmatic functionality, like 
if-statements. Wikitext is Turing complete.40 

The implementation language of the generator is the MW specific wikitext markup 
language, which is therefore also a Domain Specific Language (DSL). The generator 
is therefore transforming one DSL into another one.  

Wikitext has a few notable characteristics that influenced the implementation of the 
generator: 

Wikitext is always valid. Therefore, it cannot be validated. This can cause a few 
problems, as “broken” markup results in broken layout or functionality, but is tech-
nically still valid. This characteristic makes errors hard to spot and avoid.  

Since wikitext misses validation capabilities, the ability of the generator to validate 
the development model is a big benefit over using wikitext directly.  

Wikitext is whitespace sensitive. The resulting wikitext pages and templates can 
therefore become very difficult to write and read, because inserting whitespaces for 
readability might break the markup. The development model doesn’t have this prob-
lem; it even allows for inline comments. The generated wikitext code may be ugly, 
but even the handwritten wikitext often needs to be. 

Wikitext supports no inheritance. The true origin of this problem lies in the fact 
that wikitext does not support data as a native concept. Templates can be used to 
declare information once and reuse it somewhere else. However, since those tem-
plates are text with mainly text transforming (and nesting) capabilities, they do not 
support more advanced data specific features like inheritance. 

When designing and implementing the knowledge management structure, this be-
comes a limitation, leading to duplicated wikitext. This also makes the model much 
harder to maintain and keeping it consistent. 

                                                 

39 https://www.mediawiki.org/wiki/Extension:ParserFunctions  

40 Jared, ‘Wikimedia Proves Greenspun’s Tenth Law’ 

http://www.dict.cc/englisch-deutsch/peculiarities.html
https://www.mediawiki.org/wiki/Extension:ParserFunctions
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 Targeting an existing Platform 

Targeting an existing platform has advantages; the wheel does not have to be rein-
vented. Existing platforms have already been used in the field, tested and found use-
ful in real use cases. They also bring extensions, their community and documentation 
with them, which should not be underestimated.  

However, targeting an existing system limits the generator, as it can only support 
features that the target platform supports. The target platform will also influence the 
design of the Meta-Model, the DSL. In some cases, this saves a lot of work because 
someone has already put a lot of thought into it. In some cases, it means that incon-
sistencies or design problems of the implementation platform may leak back into the 
DSL. 

For instance, the Semantic Forms extension does not support real-time HTML5 form 
validation. The mobo Schema contains enough information to take advantage of it, 
but since the SF does not, it is currently unsupported. To implement this feature, it 
would need to be implemented in Semantic Forms first.  

 Schema Language Development 

3.3.1 Schema Language 

 JSON Schema 

Mobo uses JSON Schema41 as schema language. It was the simplest standard (the 
specification is only a few pages long) that I’ve found that still could do the job.  

JSON Schema is currently an IETF draft42 in version 4. There is work going on, cre-
ating a version 5 draft. This means that JSON Schema is still in development. The 
version 4 standard has a broad collection of libraries and programming language 
support43. 

 Benefits of JSON Schema 

JSON Schemas biggest strength is that it is simple and extendable. The simplicity of 
JSON Schema makes the model easy to read and develop with nothing but a text 
editor. It also makes the development of the generator easier, because the standard 
is easy to use and extend from a developer perspective, too. 

                                                 

41 Francis Galiegue, Kris Zyp and Gary Court, ‘JSON Schema’ 

42 http://tools.ietf.org/html/draft-zyp-json-schema-04  

43 http://json-schema.org/implementations.html  

http://tools.ietf.org/html/draft-zyp-json-schema-04
http://json-schema.org/implementations.html
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Many libraries use and support JSON Schema. Mobo uses a few of them, which def-
initely saved some development effort. E.g. for internal schema validation, the tv4 
library44 is used.  

 Limitations of JSON Schema 

There were two major issues with using JSON Schema for SDD purposes, which had 
to be resolved. 

No defined Inheritance Behavior. 

The official $ref keyword can be used to reuse or import internal and external parts 
of JSON Schema. In the (unsupported) case that the $ref keyword is on the same level 
with other properties, it is unclear how to resolve the resulting conflict. Some im-
plementations, like the tv4 validator library45, apply inheritance in this case, while 
some do not. 

Therefore, I’ve decided to introduce a custom inheritance capability through three 
new keywords: $extend, $remove and $abstract. 

The order of properties 

From modeling and data structure perspective, it makes the most sense to use the 
property notation to define sub-elements within the model. They are stored as maps 
(JavaScript objects) and therefore easy to access. 

There is one serious problem with that choice from the code generator perspective. 
While for validation and data storage purposes the order of those properties is irrel-
evant, the generator depends on the given order. The order of the input fields within 
a form must be definite. While JavaScript engines are usually generous and won’t 
mix up the order of object properties (until a certain size of the object is reached), 
the official standard does not require them to: 

An object is a member of the type Object. It is an unordered collection of 
properties each of which contains a primitive value, object, or function.46  

Since mobo stores each part of the model in its own file, the ID is already declared 
through the filename. Using properties would duplicate this information by having 
to type them as key names again. This is not only inconvenient, but potentially in-
troduces inconsistencies when the key name is not identical to the filename.  

                                                 

44 https://github.com/geraintluff/tv4  

45 https://github.com/geraintluff/tv4  

46 Ecma, ‘Standard ECMA-262 3rd Edition’ 

https://github.com/geraintluff/tv4
https://github.com/geraintluff/tv4
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I went with the compromise that the development model uses the items notation, 
using an (ordered) array structure. Mobo will then internally convert it back to the 
more convenient property notation and store the order of the items as metadata in 
a separate array.  

Code Example: 

# Item Notation 

type: array 

items: 

  - $extend: /field/fieldOne 

  - $extend: /field/fieldTwo 

  

# Is internally converted to: 

type: object 

$itemsOrder: ['fieldOne', 'fieldTwo'] 

properties: 

    fieldOne: 

        $extend: /field/fieldOne 

    fieldTwo: 

        $extend: /field/fieldTwo 

3.3.2 Notation Format 

Mobo supports both YAML47 and JSON48 as notation format.  

Internally it only uses a YAML Parser49 that is used for both YAML and JSON files. 
This is possible because YAML is a superset of JSON. Valid JSON is therefore valid 
YAML, too. The YAML parser has the additional benefit, that it returns more detailed 
syntax errors than the default JSON.parse() implementation. 

I highly recommend using the YAML notation to write the development model. It is 
more concise and more convenient to write for humans. The JSON notation does not 
even support comments, which are very convenient to have in the development 
model. That’s because JSON is primarily a machine optimized serialization format. 

                                                 

47 Oren Ben-Kiki, Clark Evans and Ingy döt Net, ‘YAML Ain’t Markup Language (YAML™) Version 1.2’ 

48 Douglas Crockford, ‘The application/json Media Type for JavaScript Object Notation (JSON)’ 

49 https://github.com/nodeca/js-yaml  

https://github.com/nodeca/js-yaml
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3.3.3 Developing the Meta-Schema (DSL) 

 Overall structure 

While it is possible to use only a few extensive schema files to describe a system, 
using many smaller files has a few advantages. First, it makes reusing them easier 
and more straightforward. Smaller files are also easier to comprehend and manage. 

In the case of modeling SMW/SF structure, it makes sense to come up with a foun-
dational structure that roughly resemble the nature of the end system. The target 
system uses SMW Properties, MW Templates, MediaWiki Categories and Semantic 
Forms to define and implement the Knowledge Structure. 

I chose to split the mobo development model into three main categories: Mobo forms, 
mobo models and mobo fields. Mobo forms can also directly refer to implementation 
specific MW Templates.  

Mobo Form

Single Instance Model

Mobo Model

Mobo Field

items
  - $extend: /model/name

Multiple Instance Model

items:
  - items:
      $extend/model/name

0..n
1

0..n
0..n

0..n

One Value

type: string

Multiple Values

items:
  type: string

{OR}

Single Instance Field

items
  - type: string

1

Single Instance Template

items
  - $extend: /smw_template/name

MW Template

0..n

1

 

Figure 6: The mobos development model structure 

Because mobo supports object-oriented inheritance in the development model, the 
mobo model structure can be more elegant as the platform structure, which is lacking 
this capability.  
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Figure 6 summarizes this structure. Mobo forms can define any number of single- 
and multiple instance models. (This reflects SF capability of using single- and multi-
ple instance templates). A model defines any number of fields it uses. Fields can be 
either single- or multiple value: Single value fields represent input fields that hold 
exactly one value; multiple values fields can hold any number of values, e.g. a field 
with comma-separated values. 

In contrast, Semantic Forms define within itself which widget to use for each SMW 
Property. In the case, that a field is used by more than one Semantic Form, this in-
formation has to be duplicated. In the mobo structure, this information is declared 
in the mobo field and inherited all the way up to the mobo form, with the possibility 
to overwrite it at any point. 

 Structure of the Mobo Schema 

I chose to use JSON Schema as the schema language of mobo. The specification of 
JSON Schema is available as a self-describing JSON Schema file50, so it can be directly 
used as meta-meta-schema.  

JSON Schema 
Specification

Core & Validation

JSON Schema 
Removals

removes extends

Mobo Fields Mobo Models Mobo Forms

validates validates validates

extends extends extends

Domain Specifics

Platform Specifics

Implement. Specifics

Domain Specifics

Intermed. Specifics

Internal Metadata

Platform Specifics

Implement. Specifics

Domain Specifics

Meta-Schema (mobo Schema)
Meta-Meta-

Schema

Mobo Schema
Global Additions

Mobo Schema
Field Additions

Mobo Schema
Model Additions

Mobo Schema
Form Additions

Platform Specifics

Implement. Specifics

Domain Specifics

Platform Specifics

Implement. Specifics

Domain Specifics

 

Figure 7: Structure of the mobo Schema 

I’ll call the meta-schema of mobo the mobo Schema. It starts by being a duplicate of 
the meta-meta-schema, the JSON Schema specification. All unsupported or unnec-
essary features of JSON Schema are removed afterwards (JSON Schema Removals).  

The JSON Schema specification itself is divided into a core and a validation specifi-
cation. The latter includes many properties that can be utilized to describe and vali-
date data structures. Mobo Schema includes the validation schema, which is used as 
a base domain specific vocabulary. 

                                                 

50 http://json-schema.org/draft-04/schema  

http://json-schema.org/draft-04/schema
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Since Mobo does not support all of JSON Schemas validation features (because Se-
mantic Forms does not), some of them are removed. The use of $ref and definition 
is substituted by the custom inheritance logic that is implemented through the inter-
mediary system. 

As Figure 7 implies, the mobo Schema is split into a mobo field schema, mobo model 
schema and a mobo form schema. The model schema includes all of the field schema 
and the form schema the entire model schema. This is necessary, because a model 
contains fields and may overwrite field specific properties on the model level. 

Specifics 

The mobo Schema defines the domain specific, platform specific and implementation 
specific properties. They are all notated together in the same file. The properties are 
prefixed depending on their specificity and the mobo Schema internally defines their 
role. 

Domain
Specifics

Platform
Specifics

Implementation 
Specifics

Intermediary
Specifics

 

Figure 8: Mobo Schema with indicated specifics 

Intermediary Specifics 

The intermediary property $extend triggers the custom inheritance logic in the in-
termediary system. Intermediary specifics are prefixed with a dollar sign. 

Domain Specifics 

The title, type and format properties already come with the JSON Schema valida-
tion specification and describe information in a domain specific way. The mobo 
Schema additionally introduces a few own domain specific properties. They have no 
prefix. 

Platform Specifics 

Platform specific information directly resembles and translates into the options of 
the target platform. E.g., the sf_form property is platform specific, as it hints though 
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its prefix. It directly targets the SF (Semantic Forms) platform. In this case, the op-
tions are described in the official Semantic Forms documentation51. Because the op-
tions are only forwarded, mobo does not have to support them on its own. 

Using those platform specific properties has the disadvantage of them being depend-
ent on the target platform. They cannot easily be translated to a different platform. 
Since mobo only supports one target platform, this is not much of a problem. 

The benefit of this approach is that new or changed features of the target platform 
are immediately available to use. Mobo does not need to be updated in order to sup-
port them. This also saves mobo a lot of DSL development effort. 

Implementation Specifics 

Implementation specific attributes like smw_overwriteDisplay share their prefix with 
the platform specifics, since both target a specific platform. They can be distin-
guished by the fact that implementation specific properties directly use wikitext as 
values. 

Paragraph 3.4.6 will further explain the example of Figure 8 by illustrating how it is 
transformed through the individual layers. 

Documentation Generation 

Mobo can automatically generate the technical documentation of the mobo schema. 
It is rendered in markdown52 format, which then is included to the official GitBook53 
documentation though imports.  

To keep the documentation clear, only those properties are rendered that are na-
tively specific to the model part. 

                                                 

51 https://www.mediawiki.org/wiki/Extension:Semantic_Forms/Defining_forms#.27field.27_tag  

52 The Daring Fireball Company LLC, ‘Markdown’ 

53 https://www.gitbook.com  

https://www.mediawiki.org/wiki/Extension:Semantic_Forms/Defining_forms#.27field.27_tag
https://www.gitbook.com/
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Figure 9: Auto-generated mobo Schema documentation 

3.3.4 Custom inheritance 

An important feature of mobo is the custom inheritance logic. It does not only help 
reusing the code, but also helps to establish the actual structure of the model. 
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Figure 10: Model inheritance behavior 
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A child object uses $extend to declare its parent and will inherit all properties of the 
parent. Properties of the child object will always overwrite properties of the parent 
object. 

In the case that both share the same property, the merging behavior is the following: 

 Primitive properties (String, Number, Boolean) will be overwritten. 
 Objects will be merged. If the object has identical properties, the merging 

logic will be recursively re-executed at this point. 
 Arrays are handled accordingly to the annotations they contain. For example, 

an array containing @prepend and @unique, will first be merged so that the 
child properties come first. Then all duplicate items will be removed. For all 
options, please refer to the mobo user manual54. 

Figure 10 also illustrates how properties within the model are resolved. More imple-
mentation specific properties always override the less specific properties. 

 Architecture of the Generator 

3.4.1 Overview 

The current implementation of mobo uses all of those proposed architectural parts 
(see Figure 4), but does not implement all possible aspects of it.  

In fact, the architecture was developed parallel to mobo. In some cases, I have in-
ferred the architecture from the actual practice and in other cases, designing the 
architecture led to refactoring mobo. For those historical reasons, the actual archi-
tecture of mobo may not always be as ideal as the proposed architecture. 

3.4.2 Input 

Mobo stores each element of the model in its own file and organizes the structure 
through folders. The first level of the folder structure separates the different model 
areas, like mobo forms, mobo models, mobo fields, MW templates, etc. This is a man-
datory structure that mobo will generate when initializing a new project.  

The directory structure within those folders will be flattened and ignored. The files 
can therefore be organized and moved freely without having to adjust the exact 
paths. The names of the files must be unique anyway. 

Mobo will read those files, parse them and store the resulting data structure in the 
internal registry object. 

                                                 

54 Simon Heimler, ‘mobo documentation’ 
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3.4.3 Model to Model Transformations 

 Introduction 

Mobo uses JavaScript for model-to-model transformations and no specialized trans-
formation languages. The lodash utility library55 proved to be very helpful for data 
analysis and transformation tasks. 

 Compatibility Layer 

The compatibility layer became necessary when I decided to refactor some parts of 
the mobo Schema. I had already developed a rather big model that was already in 
productive use.   

In order not to break my current model, I had to introduce some transformations 
that upgrade legacy properties or schema structures to the latest standard.  

As a side effect, the compatibility layer made a sort of test-driven development work-
flow possible. When new features are introduced or existing ones changed, I could 
implement them in the compatibility layer first. The generator will then fail on its 
task to generate the model until the introduced features are developed and inte-
grated.  

The generator also keeps a diff to the last uploaded state of the target system. This 
can be used to detect involuntary changes to the implementation code. In the case, 
that a refactoring must not change the result, I could develop and fix the newly in-
troduced feature until the diff was identical again.  

The compatibility layer also tells the user, which parts of the model have to be up-
graded, and give a short hint how to do it.  

 Intermediary Layer 

The intermediary layer subsequently adds object-oriented inheritance capability to 
JSON Schema. Currently, it has no other functionality. 

Please note, that I have already introduced the inheritance feature in paragraph 3.3.4 
and explained the intermediary layer on a generic level. 

Internally, mobo makes heavy use of the lodash library, especially _.merge56 for 
merging objects (providing custom logic, which handles arrays) and _.cloneDeep57 
to ensure that objects aren’t accidentally mutated in the process. 

                                                 

55 https://lodash.com/ and the book Boduch, Lo-Dash essentials 

56 https://lodash.com/docs#merge  

57 https://lodash.com/docs#cloneDeep  

https://lodash.com/
https://lodash.com/docs#merge
https://lodash.com/docs#cloneDeep
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The inheritance layer checks for circular dependencies and gives a warning if in case 
one is detected. Additional metadata is added that helps analyzing the model, e.g. for 
tree shaking to detect unused parts of the model. 

 Platform Layer 

At the time of writing, some platform and implementation logic is still implemented 
in the code generator itself; mostly for historical reasons. Refactoring them out 
would definitely improve the architecture of mobo and probably save some lines of 
code, too. 

It would also make sense to create a small independent library with helper methods 
to turn data structures into wikitext, e.g. template calls, functions, tables. This library 
could be then be used in the platform layer, the template engine (through a small 
wrapper) and other, unrelated projects. 

3.4.4 Model to Text Transformation 

 Code Generator 

The code generator currently makes use of the handlebars.js template engine58 with 
some custom functions added. Handlebars is a rather simple template. It does not 
support some more advanced features like template inheritance.  

The fact that the template engine uses some of the same control characters (for open-
ing and closing tags/functions) as wikitext makes the use of escaping very necessary.  

A useful feature of handlebar.js is the use of the circumflex character to strip white 
spaces before and after handlebars expressions. This allows introducing some white 
space to make the templates more readable while the resulting wikitext can be the 
whitespace-less clutter it sometimes needs to be. 

Example 

{{#each template~}} 

 

{{~#if this.prepend}}{{{this.prepend}}}{{/if~}} 

3.4.5 Output 

Mobo can handle the deployment to the target wiki itself or simply write the result-
ing wikitext files on the file system.  

By default, mobo runs in an interactive mode. It detects changes on the local file 
system and automatically (re)triggers the process. Depending on the settings, which 

                                                 

58 http://handlebarsjs.com/  

http://handlebarsjs.com/
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can specify which steps mobo should automatically execute, this leads to the follow-
ing workflow steps: 

1. Validation of the development model 
2. Compilation of the development model to the final wikitext 
3. Display which of the resulting wiki pages have changed since the last suc-

cessful upload to the end system 
4. Automatic and optional upload of all wikipages or (by default) only the pages 

that have been affected. 
5. Writing optional statistics and log files. Uploads an optional report to the 

wiki. 

Mobo currently does not support unit-tests or end-to end tests, so the deployment 
does not include automated testing. 

3.4.6 Transformation Example 

To get a broader picture of the overall transformation process, I'd like to get back to 
the example code in Figure 8.  

For sake of better readability and formatting, I have added white spaces and line 
breaks. The example is simplified and reduced, to illustrate the relevant aspects of 
the transformation layers. 

Development Model: 

The example is written in the YAML notation. It contains intermediary, domain, 
platform and implementation specific properties.  

$extend: /field/parentField 

title: Field Title 

type: string 

format: email 

smw_form: 

  input type: combobox 

  values from property: hasEmail 

smw_overwriteDisplay: '[[mailto:{{{fieldName|}}}]]' 

Input Stage 

In the input stage, the development model is parsed to the internal data structure of 
the target language. In case of JavaScript, it can be expressed through the JSON no-
tation. 

{ 

  "$extend": "/field/parentField", 

  "$path": "C:/the/path/to/someFieldId.yaml", 
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  "title": "Field Title", 

  "type": "string", 

  "format": "email", 

  "smw_form": { 

    "input type": "combobox", 

    "values from property": "hasEmail" 

  }, 

  "smw_overwriteDisplay": "[[mailto:{{{fieldName|}}}]]" 

} 

Compatibility Layer 

The compatibility layer detects deprecated parts of the development model. In this 
example, the smw_form property name will be renamed to sf_form.  

{ 

  "$extend": "/field/parentField", 

  "$path": "C:/the/path/to/someFieldId.yaml", 

  "title": "Field Title", 

  "type": "string", 

  "format": "email", 

  "sf_form": { 

    "input type": "combobox", 

    "values from property": "hasEmail" 

  }, 

  "smw_overwriteDisplay": "[[mailto:{{{fieldName|}}}]]" 

} 

 
The compatibility layer will also notice the user that it has done so. 

[i] Renaming deprecated properties "smw_form" to "sf_form" (1) 

After the Intermediary Layer 

A new sf_form option, existing values only, is inherited. All other properties are 
overwritten by the children itself. 

After the inheritance is applied, the $extend property is removed. 

{ 

  "$path": "C:/the/path/to/someFieldId.yaml", 

  "title": "Field Title", 

  "type": "string", 

  "format": "email", 

  "sf_form": { 
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    "input type": "combobox", 

    "values from property": "hasEmail", 

    "existing values only": true 

  }, 

  "smw_overwriteDisplay": "[[mailto:{{{fieldName|}}}]]" 

} 

After the Platform Layer 

The platform layer infers the platform specific smw_type property from the domain 
specific type and format properties. 

{ 

  "$path": "C:/the/path/to/someFieldId.yaml", 

  "title": "Field Title", 

  "type": "string", 

  "format": "email", 

  "smw_type": "Email", 

  "sf_form": { 

    "input type": "combobox", 

    "values from property": "hasEmail", 

    "existing values only": true 

  }, 

  "smw_overwriteDisplay": "[[mailto:{{{fieldName|}}}]]" 

} 

After the Code Generator 

The code generator produces the final wikitext pages. Please note that the mobo 
structure is not directly translated into the wikitext structure. In this example, a 
mobo field will result in one dedicated wikipage and parts of at least two (depending 
on the inheritance) more wikipages. 

Property:SomeFieldId 

For each field, a SMW Property page is created, declaring the internal SMW 
datatype. 

<noinclude> 

<div class="mobo-generated">This page is autogenerated, do not edit it 
manually!</div>  

[[Category:mobo-generated]] 

</noinclude> 

* This is an attribute of the datatype [[Has type::Email]]. 
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Template:SomeModelId 

The mobo field will also transform into a part of a MW Template. The template de-
fines how the field is rendered in the page view mode. 

[...] 

{{#if: {{{someFieldId|}}} | 

<div class="row"> 

    <div class="col-sm-4 col-md-3 row-label">Field Title</div> 

    <div class="col-sm-8 col-md-9 row-value" data-property="someFieldId"> 

      {{{ someFieldId |}}} 

    </div> 

</div> |}} 

[...] 

Form:SomeFormId 

The SF platform specific field information end up as part of a SF Semantic Form and 
define how the field is rendered in the form view mode. 

[...] 

<div class="sfFieldContent col-sm-8 col-md-9"> 

{{{field 

|someFieldId|class=attr_someFieldId 

|input type=combobox|max values=1|existing values only 

|values from property=hasEmail 

}}} 

</div> 

[...] 

 Tooling 

3.5.1 Validation 

Since wikitext can’t be validated, mobos internal validation becomes an even more 
important aspect of the generator. The validation is realized on a syntax, structure 
and semantic level. 

If mobo is run in interactive mode, it will provide validation feedback nearly imme-
diately after a file of the development model is saved.  

3.5.2 Model Inspection Tools 

When run in interactive mode, mobo serves a web application, the mobo inspector. 
It allows viewing the development model, expanded model and the implementation 
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system code (the resulting wikitext). In the case that the final wikitext code differs 
from the last upload state, a visual DIFF is displayed. 

The mobo inspector also comes with automatic documentation generation, using the 
docson59 library. It displays exemplary forms through the jsoneditor60 library, though 
this is mostly to demonstrate the ability to generate forms from JSON Schema on a 
more abstract level. It is not a replacement for viewing the forms on the end system.   

 

Figure 11: The mobo inspector 

Mobo can generate an interactive, graph-based visualization of the development 
model. To use this feature, the graph mobo generates needs to be prepared by ap-
plying a graph layout algorithm first, however. This can be done with Gephi61, a 
graph analysis and visualization software. 

                                                 

59 https://github.com/lbovet/docson  

60 https://github.com/jdorn/json-editor  

61 http://gephi.github.io/  

https://github.com/lbovet/docson
https://github.com/jdorn/json-editor
http://gephi.github.io/
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Figure 12: The interactive graph explorer, visualizing the development model 

3.5.3 Model Development Tools 

Mobo does not come with custom model development tools. JSON Schema, especially 
when using the YAML notation, is easy to write with standard text editors.  

Personally, I prefer a text editor to visual tools when the markup is reasonable sim-
ple. I’ve made good experiences using SublimeText62 and the Atom63 editor. I recom-
mend using a YAML linter for real-time syntax error feedback and the fuzzy file 
finder for quickly navigating through the development model project.  

Using only a text editor resulted in a very fast and convenient model development 
workflow for me personally. 

3.5.4 Helper Utilities 

Mobo features a few helper utilities. The actual documentation of those utilities can 
be found in the mobo user manual64. 

Nuker 

The nuker module allows to batch-delete all wikipages of certain namespaces. This 
comes in handy when prototyping on a development wiki system. 

                                                 

62 http://www.sublimetext.com/  

63 https://atom.io/  

64 Simon Heimler, ‘mobo documentation’ 

http://www.sublimetext.com/
https://atom.io/
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Importer 

Mobo also comes with an importer module. It can batch-import static wikipages or 
use a programmatic import. The programmatic importer comes with several helper 
functions, e.g. validating imported data against the development model, automati-
cally enhancing incomplete information. It also comes with a few helper functions 
that allow creating wikipages easier. 

The importer module can also run in an interval, continually importing new data 
from external sources. 

Statistics and Reports 

When generating the model, mobo can calculate some statistics and append them to 
a CSV file. This helps keeping track of the development model history. 

Mobo can also upload reports of its activity and an annotated tree outline of the 
generated model. 

 Use case: Modeling IT Management Knowledge 

3.6.1 Introduction 

I have developed mobo along a real modeling use case of Computer Bauer GmbH. 
Their requirements were rather special in some cases, so we had to realize a custom 
KMS structure.  

The main subject of the model was IT hardware- and software management, with a 
tightly integrated CRM. 

3.6.2 Using SDD in Practice 

Once mobo was developed, we switched from a conceptual and rather theoretic 
model development to an agile, rapid prototyping workflow. 

We met once or twice a week as a group and discussed new features. Minor features 
or changes could be developed and deployed in a matter of seconds/minutes. We 
could therefore implement, test and evaluate those features in very short sprints. 
Reviewing the result in an actual working end-system with the same functionality 
as the final system was very helpful in this process. 

It proved possible to implement even medium sized features that resulted in minor 
structural changes in less than an hour. This is less enough effort, to encourage ex-
perimenting with ideas and evaluate them not just on a theoretical basis. Since the 
model is versioned, it is simple to roll back those changes again - there is no risk 
involved. 
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The low implementation costs and low risk allowed (and encouraged!) us to try ideas 
and features we otherwise might have omitted. 

Bigger changes and refactoring phases I’ve implemented between the meetings. 

Requirements

Implementation

Testing

Evaluation
Milestone
Iteration
(weeks)

Feature
Iteration

(minutes / hours)

 

Figure 13: Agile/iterative development workflow 

When bigger milestones were reached, we conducted user testing with end users, 
testing actual use cases from the company. The feedback went back into the next 
iteration. Minor changes we usually implemented at once. 

Overall, we were very pleased with the development workflow that mobo made pos-
sible. Given the complexity of our project, using a model/schema driven workflow 
may have even become a necessity for the success of this project. 

Once the KMS was officially introduced, we had only a few problems to solve in the 
live system, since it was already well tested. 

Of course, most of the total development time went into mobo itself. It is difficult to 
judge whether overall development time has been saved. However, the parallel de-
velopment of the model and the generator allowed shifting much of the hard work 
and biggest time investments to the generator. The development of the generator is 
therefore a preparation, as it can be done in advance or between the meetings. 

In the long run, the development effort of the generator will increasingly pay off as 
it can be reused for other projects. 

The actual model development usually requires the knowledge and involvement of 
many peoples. The SDD approach saves them a lot of time or makes this sort of 
teamwork feasible in the first place. 
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3.6.3 Evaluation of the Development Model 

The development model consists of 211 mobo fields, 126 mobo models, 56 mobo 
forms, 68 templates, 23 queries and 9 pages. The development model is 80.556 char-
acters (~78kB) big. 

 

Figure 14: A force-layouted graph visualization of the development model 

Those numbers does not include imported pages. We imported a few dozen static 
pages and a few thousands wikipages that were programmatically generated, based 
on data from external databases. 
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Figure 15: The development model, split into the specifics 

The development model consists of 31% intermediary specific properties, 41% domain 
specific, 5% platform specific and 23% implementation specific. 

The intermediary specific properties should be considered as domain specific, since 
they define the actual structure of the model itself. 

The high number of implementation specifics stems from the fact some parts of the 
model necessarily have to be written in wikitext, e.g. queries. In the case of our 
model, some implementation specific properties result in rather selective and small 
overwrites. In most cases, the implementation code is prepended or appended and 
therefore an addition to the generated code. There was no need to overwrite gener-
ated wikipages as a whole in any case. 

Since mobo keeps historical track of the statistics, it is possible to view and analyze 
the development process. Let me give you a short, interpreted example: 

 

Figure 16: The size of the development model and the implementation code over time.  
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The diagram indicates the progression of the development model size and the imple-
mentation code size (dashed line). Please note that the lines have different axis scales 
for visual reasons; the important aspect is their correlation. 

The implementation code size usually grows, except when actual features are re-
moved. The development model size is a lot more dynamic. This is the result of our 
rapid-prototyping approach and indicating the cycle between fast model develop-
ment and the subsequent refactoring/cleanup phase. At our meetings, we developed 
new features very fast. When those features were accepted, I put some refactoring 
effort into them like improving code reuse and reducing the technical debt that 
comes with rapid-prototyping development.  

This refactoring phase is especially obvious at the end of the chart, where the devel-
opment model size decreases notably, while the size of the implementation code 
stays identical. 

3.6.4 Evaluation of the Implementation Code 

The resulting implementation consists of 203 SMW properties, 254 MW templates, 
51 SF forms, 134 MW categories and 9 MW pages. It is 961.294 characters (~ 939kb) 
big. 

 

Figure 17: The model size in its various stages; measured in number of characters (x-axis) 

For every character in the development model, there are nearly 12 characters of gen-
erated implementation code.  

I do not argue that this results in 12 times more productivity. It depends on what 
part of the model is worked on. In cases where a lot of inheritance is involved, 
changes that take only a few seconds in a mobo could result in up to an hour of 
refactoring and a lot of risk to introduce inconsistencies while doing so. Other 
changes (on queries for example) take practically identical time. 
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 Outlook 

3.7.1 Mobo 

While realizing this project, I have collected a few possible features and improve-
ments for future releases of mobo. 

Internationalization 

The intermediary layer could add internationalization to the model. The user could 
then write custom language definitions and define in the settings.yaml which lan-
guage to use. 

The internationalization could also happen on the wiki level, in case of multi lingual 
MediaWiki installations. 

A more flexible template engine 

As hinted at in the paragraph 3.4.4.1 about the code generator, the current template 
engine is rather simple. The fact that no template inheritance/extension is supported 
results in loss of flexibility.  

When a new mobo version introduces breaking-changes to the mobo templates, the 
current development model has to update its templates. In the case, that they have 
been adapted, those adaptions must be made anew. This could problem could be 
partially solved, by modularizing the template render modes to individual files and 
integrate/overwrite the default mobo templates. 

I am currently considering two templates engines that might be better suited for the 
job: Swig65 and nunjucks66. 

Multiple Models in one Project 

An improvement on the modularity of model development could be made by the 
introduction of modular models. This would make mobo more comfortable to use 
when deploying existing, modular model-parts. 

In this case, a mobo project would consist of only one model, but a collection of 
models and one central settings file that declares the order and importance of those 
model-modules. In the case, that adjustments have to be made, a module containing 
all customizations can be added. 

Splitting the Project into multiple modules makes the model development more man-
ageable (modules are smaller and contained) and reusable. 

                                                 

65 http://paularmstrong.github.io/swig/  

66 https://github.com/mozilla/nunjucks  

http://paularmstrong.github.io/swig/
https://github.com/mozilla/nunjucks
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Automated Testing 

End-to-end testing would be a useful addition. Mobo already knows how the final 
forms should look like and behave, so it could generate those tests at least semi-
automatically. 

Of course, this would mostly test the correctness of the generator (mobo) and the 
correct functionality of the end system. However, in cases where wikitext is injected 
directly (and this is hardly to avoid), it would be very useful to test that the custom 
wikitext does not break the final generated wikitext. 

Quality Bot 

This idea came up early in our project. Mobo could be used as a bot that reads and 
rates the quality and validity of the stored information. This can’t be achived with 
the current platform, for several reasons. First, Semantic Forms has only elementary 
validation capabilities. Second, there are validation issues with the entered infor-
mation that depends on the context of already existing data. Third, some information 
may be technically valid but unreasonable. There is also the problem that while some 
information is not required to provide, their existence does contribute greatly to the 
quality of the knowledge base. 

To assess those softer quality criteria and more difficult validation rules, it would be 
useful to have a bot that scans the wiki for those issues. This makes the bot somewhat 
similar to a reasoner67. After extracting and reasoning about the quality of the infor-
mation available, it could rate the content together with a report explaining the qual-
ity assessment and store it on the affected wikipage. The criteria how to rate the 
quality could be part of the development model. 

A quality bot would make it faster and easier to spot information quality issues in 
the knowledge base. 

MediaWiki already has a strong tradition of using bots to aggregate and rate con-
tent.68 Building a quality bot on top of a SDD project would be especially convenient. 
The bot can build upon the already existing schema structure. 

3.7.2 SDD 

For our particular use case, the SDD approach worked well. It proved to be easy 
enough to develop the DSL and the generator, so that the benefits that come with 
SDD did outweigh the time investments to develop the system.  

                                                 

67 Wikipedia, ‘Semantic reasoner - Wikipedia, the free encyclopedia’ 

68 https://en.wikipedia.org/wiki/Wikipedia:Bots/Status#Active_bots  

https://en.wikipedia.org/wiki/Wikipedia:Bots/Status#Active_bots
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It is important to address the issue of accidental complexity69 that comes with creat-
ing an intermediary system and DSL. I would argue that in our case, it kept relatively 
low, as the SDD approach requires very few technologies to learn and much of the 
domain specifics of the schema language can be reused.  

The use of platform and implementation specific properties reduces not only the 
complexity of designing the DSL itself, it also allows to put existing knowledge of 
the end system directly into use. The direct use of platform specific properties that 
translate directly to platform options is probably the biggest contributor to simpli-
fying the DSL. 

It is hard to measure accidental complexity, but in the case of mobo, my personal 
assessment is that it is reasonably low. After all, reducing the complexity of the ap-
proach itself is one of the primary goals of SDD.  

  

                                                 

69 France and Rumpe, ‘Does model driven engineering tame complexity?’ 
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